• Title/Summary/Keyword: 4-Oxo-$\beta$-ionone

Search Result 4, Processing Time 0.019 seconds

Constituents of Aerial Parts from Erechtites hieracifolia (붉은서나물 지상부의 성분)

  • 이재훈;권학철;최상진;이원빈;방은정
    • YAKHAK HOEJI
    • /
    • v.45 no.4
    • /
    • pp.339-346
    • /
    • 2001
  • A new oxygenated monoterpene (4) was isolated from the methanol extract of the aerial part of Erechtites hieracifolia together with six known components, a dimethylheptane (1), three ionone derivatives (2, 3 and 7) and two phenylpropanoids (5 and 6). Their structures were identified by means of physico-chemical and spectral data to be (2E, 5E)-6-hydroxy-2,6-dimethylhepta-2,4-dienal (1), 3(R)-hydroxy-5,6-epoxy-$\beta$-ionone (2), 3(R)-hydroxy-5,6-epoxy-7-ionol (3), (3E, 6E)-3,7-dimethylocta-3,5-dien-1,2,7-triol(4), 2-hydroxy-4-(2-propenyl)phenyl-$\beta$-D-glucopyranoside (5), 2-methoxy-4-(2-propenyl)phenyl -$\beta$-D-glucopyra-noside (6) and (6R, 9R)-3-oxo-$\beta$-ionol-$\alpha$-D -glucopyranoside (7).

  • PDF

Glycosidically Bound Volatile Components in Apricot (Prunus armeniaca var. ansu Max.) (살구에서 배당체의 형태로 존재하는 휘발성 성분)

  • Kim, Young-Hoi;Kim, Kun-Soo;Park, Joon-Young;Kim, Yong-Tae
    • Korean Journal of Food Science and Technology
    • /
    • v.22 no.5
    • /
    • pp.549-554
    • /
    • 1990
  • Glycosidically bound fraction was separated from apricot by Amberlite XAD-2 adsorption and eluted with methanol. Aglycones were liberated from the bound fraction by enzymatic hydrolysis, acid hydrolysis or by means of simultaneous distillation-extraction at pH 3.0. A total of 40 components were identified in three bound volatile fractions. Besides linalool oxide, linalool. ${\alpha}-terpineol$, nerol, geraniol, benzyl alcohol and 2-phenylethyl alcohol, previously reported as glycosidically bound volatiles, the following components were identified for the first time as glycosidically bound volatiles in apricot: 2,6-dimethyl-3,7-octadiene-2,6-diol , 3.7-dimethyl-1,5-octadiene-3,7-diol, (E)- and (Z)-2.6-dimethyl-2,7-octadiene-1,6-diol, $3,4-didehydro-{\beta}-ionol,\;3-oxo-{\alpha}-ionol$, $3-hydroxy-7,8-dihydro-{\beta}-ionol,\;3-oxo-7,8-dihydro-{\alpha}-ionol ,\;3-hydroxy-{\beta}-ionone$, eugenol, 4-hydroxyethylphenyl acetate and 2,3-dihydrobenzofuran.

  • PDF

The Stereospecific Synthesis of Abscisic Acid

  • Park, Oee-Sook;Lee, W.Y.;Park, J.C.
    • Korean Journal of Pharmacognosy
    • /
    • v.17 no.1
    • /
    • pp.67-72
    • /
    • 1986
  • A stereospecific synthesis of 3-methyl-5-(1-hydroxy-4-oxo-2,6,6-trimethyl-2-cyclohexen-1-yl)-cis, trans-2,4-pentadienoic acid (abscisic acid) from ${\alpha}-ionone$ has been investigated. Ethyl 5-(2,6,6-trimetyl-2-cyclohexen-1-yl)-trans-4-penten-2-ynoate $({\alpha},{\beta}-acetylenic\;ester)$, which was synthesized from alpha-ionone in two steps, was stereospecifically converted in good yield into ethyl 3-methyl-5-(2,6,6-trimethyl-2-cyclohexen-1-yl)-cis, trans-2, 4-pentadienoate $({\alpha}-ionylideneacetate)$ by the conjugate addition of lithium dimethylcuprate at $-78^{\circ}C$. Basic hydrolysis of the ethyl ${\alpha}-ionylideneacetate$ gave an abscisic acid precursor, 3-methyl-5-(2,6,6-trimethyl-2-cyclohexen-1-yl)-cis, trans-2,4-pentadienoic acid, which can be oxidized to yield abscisic acid.

  • PDF