• Title/Summary/Keyword: 4-Nonylphenol

Search Result 75, Processing Time 0.027 seconds

Characterization and gene expression of heat shock protein 90 in marine crab Charybdis japonica following bisphenol A and 4-nonylphenol exposures

  • Park, Kiyun;Kwak, Ihn-Sil
    • Environmental Analysis Health and Toxicology
    • /
    • v.29
    • /
    • pp.2.1-2.7
    • /
    • 2014
  • Objectives Heat shock protein 90 (HSP90) is a highly conserved molecular chaperone important in the maturation of a broad spectrum of protein. In this study, an HSP90 gene was isolated from Asian paddle crab, Charybdis japonica, as a bio-indicator to monitor the marine ecosystem. Methods This work reports the responses of C. japonica HSP90 mRNA expression to cellular stress by endocrine disrupting chemicals (EDCs), such as bisphenol A (BPA) and 4-nonylphenol (NP) using real-time. reverse transcription polymerase chain reaction. Results The deduced amino acid sequence of HSP90 from C. japonica shared a high degree of homology with their homologues in other species. In a phylogenetic analysis, C. japonica HSP90 is evolutionally related with an ortholog of the other crustacean species. The expression of HSP90 gene was almost distributed in all the examined tissues of the C. japonica crab but expression levels varied among the different body parts of the crabs. We examined HSP90 mRNA expression pattern in C. japonica crabs exposed to EDCs for various exposure times. The expression of HSP90 transcripts was significantly increased in C. japonica crabs exposed to BPA and NP at different concentrations for 12, 24, 48 and 96 hours. The mRNA expression of HSP90 gene was significantly induced in a concentration- and time-dependent manner after BPA or NP exposures for 96 hours. Conclusions Taken together, expression analysis of Asian paddle crab HSP90 gene provided useful molecular information about crab responses in stress conditions and potential ways to monitor the EDCs stressors in marine environments.

Induction of In Vitro Vitellogenin Synthesis by Bisphenol, Nonylphenol and Octylphenol in Chinese Minnow(Phoxinus oxycephalus) Hepatocytes

  • Park, Chang-Beom;Kim, Byung-Ho;Na, Oh-Soo;Choi, Young-Chan;Lee, Young-Don;Baek, Hae-Ja;Kim, Hyung-Bae;Akihiro Takemura
    • Animal cells and systems
    • /
    • v.7 no.3
    • /
    • pp.227-235
    • /
    • 2003
  • Bisphenol A (BPA), nonylphenol (NP), and 4-tert-octylphenol (OP) are known endocrine disrupting chemicals (EDCs) with estrogenic activity in fish. This study compared the effects of BPA, NP and OP on in vitro vitellogenin (VTG) synthesis in primary cultures of hepatocytes of the Chinese minnow Phoxinus oxycephalus. The VTG secreted into the culture medium was measured using enzyme-linked immunosorbent assay (ELISA), which we developed in this study using an antibody prepared from homogenates of Chinese minnow egg. VTG synthesis was induced by estradiol-17$\beta$ ($E_2$) and phenols (BPA, NP and OP) treatment. $E_2$ at concentrations of 10$^{-6}$ M or higher increased VTG levels significantly (P < 0.05). Exposure to 10^5\;M\;BPA\;or\;10^-4$M NP and OPinduced in vitro VTG synthesis (P < 0.01). However, $10^-3$ M BPA, NP or OP did not induce VTG synthesis. These results suggest that SPA has the highest estrogenic potential in Chinese minnow hepatocytes. Tamoxifen, an anti-estrogen, drastically blocked the production of VTG by phenols (BPA, NP and OP) suggesting that phenols (BPA, NP and OP) may act via binding to estrogen receptor (ER) in Chinese minnow hepatocytes.

GESTATIONAL EXPOSURE TO NONYLPHENOL CAUSE PRECOCIOUS MAMMARY GLAND DEVELOPMENT IN FEMALE RATS

  • Moon, Hyun-Ju;Kim, Hyung-Sik;Shin, Jae-Ho;Kang, Il-Hyun;Kim, Tae-Sung;Suzanne. E. Fenton;Han, Soon-Young
    • Proceedings of the Korean Society of Toxicology Conference
    • /
    • 2001.10a
    • /
    • pp.175-175
    • /
    • 2001
  • This experiment tested whether in utero and lactational exposure to 4-nonylphenol (NP) alters mammary gland differentiation in the female offspring rat. Pregnant Sprague Dawley rats were administered NP (l0, 100 mg/kg), atrazine (l00 mg/kg), pesticide demonstrating antiestrogenic activity in mammary gland development, or vehicle (0.5% methyl cellulose) by oral gavage from gestation day 15-19.(omitted)

  • PDF

Safty of Alternatives for Endocirne Disrupting Substances (내분비계장애물질 대체소재의 안전성)

  • Park, Chan Jin;Kim, Woong;Gye, Myung Chan
    • Korean Journal of Environmental Biology
    • /
    • v.33 no.4
    • /
    • pp.361-374
    • /
    • 2015
  • Endocirne disruptors (EDs) can cause fertility decrease, developmental disorder, and even cancer in animals. Until 90's, EDs were used in various synthetic products including paints, coatings, detergents, plastics, and plasticizers. Currently, in several countries, the production, trade and use of EDs or EDs-suspected chemicals have been regulated while activity to screen the alternatives for EDs including bisphenol-A, phthalate and nonylphenol is active. Although various toxicity test method was developed and applied for screening of alternatives, however, the safety of alternatives has been not fully demonstrated. Some alternatives have high structural similarity with existing EDs, raising the possible risk of endocrine disruption by alternatives. In an effort to develop the safe alternatives, we reviewed the effects of EDs such as bisphenol-A, phthalates, nonylphenol and their substituents. In addition, in-silico analysis for endocrine disrupting activities of some alternatives was presented.

Responses of Cytochrome P450 and EROD Activity in Rockfish (Sebastes schlegeli) Administered Intraperitoneal Injection of 4-nonylphenol (노닐페놀을 주사한 조피볼락의 간장 cytochrome P450과 EROD의 반응)

  • 전중균;이지선;손영창;심원준;정지현;홍경표;김병기;한창희
    • Korean Journal of Environmental Biology
    • /
    • v.22 no.1
    • /
    • pp.171-176
    • /
    • 2004
  • Nonyphenol (NP) used actively as non-ionic surfactant is classified as one of most potent endocrine disrupting chemicals. Effects of NP on mixed function oxygenase (MFO) system in rockfish (Sebastes schlegeli) were investigated for seven days after intraperitoneal injection (10 and 25 mg $kg^{-1}$). Hepatosomatic index (BSI) of fishes exposed to NP of 25 mg $kg^{-1}$ was significantly reduced compared to those in control group. NP exposure enhanced cytochrome P450 levels in the fish liver, while 7 ethoxyresorufin-O-deethylase (EROD) activity was inhibited. NP exposure levels in this study were much higher than those found in the coastal environment of Korea. Effects on HSI and liver MFO system, which is involved in steroid hormone metabolism, imply that W may influence on reproduction of fish by not only hormone receptor mediated response but also through effects on the MFO system.

Effects of Nonylphenol on the Secretion of Catecholamines and Adrenocortical Hormones from Short-Term Incubated Rat Adrenal Glands

  • Hee-Su Kim;Yong-Pil Cheon;Sung-Ho Lee
    • Development and Reproduction
    • /
    • v.27 no.4
    • /
    • pp.213-220
    • /
    • 2023
  • Previously, we showed that a chronic-low-dose nonylphenol (NP) exposure resulted in histological changes with sexually dimorphic pattern in rat adrenal glands. We hypothesized that such structural changes are closely related to the hormonal secretory patterns. To test this hypothesis, we developed the short-term adrenal incubation method, and measured the levels of catecholamines and cortical steroids using the high-performance liquid chromatography with electrochemical detection (HPLC-ECD) and specific enzyme-linked immunosorbent assay, respectively. The norepinephrine (NE) levels in media from NP-treated female adrenal, except 100 pM NP, were significantly increased [control (CTL) vs 1 nM NP, p<0.001; vs 10 nM NP, p<0.05; vs 100 nM NP, p<0.001; vs 1 µM NP, p<0.01]. The NE secretion from male adrenal was higher when treated with 100 nM and 1 µM NP (CTL vs 100 nM NP, p<0.05; vs 1 µM NP, p<0.05, respectively). The aldosterone level in the female adrenal media treated with 100 pM NP was significantly decreased, on the other hand, that of media treated with 10 nM NP was significantly increased (CTL vs 100 pM NP, p<0.05; vs 10 nM NP, p<0.01). In male adrenal media, the aldosterone levels of 10 nM, 100 nM and 1 µM NP-treated media were significantly declined (CTL vs 10 nM NP, p<0.001; vs 100 nM NP, p<0.001; vs 1 µM NP, p<0.001). These results showed the NP treatment altered secretory pattern of aldosterone from adrenals of both sexes, showing sexual dimorphism. It may be helpful for understanding possible adrenal pathophysiology, and endocrine disrupting chemicals-related sexually dimorphic phenomena in adrenals.

Extraction of La(III) by a nonionic microemulsion containing D2EHPA in hollow fiber contactor

  • Ou, Huilin;Gong, Fuzhong;Tang, Yanxia;Luo, Yan;Liu, Liheng
    • Membrane and Water Treatment
    • /
    • v.12 no.2
    • /
    • pp.75-82
    • /
    • 2021
  • This study aimed to prepare a W/O nonionic microemulsion system(MEs) consisting of OP-4[polyoxyethylene(4) nonylphenol], OP-7[polyoxyethylene(7) nonylphenol], 1-hexanol, D2EHPA, kerosene and HCl solution and applied to the extraction of La(III) from chloride aqueous solution within the polysulfone hollow fiber contactor (HFC),laboratory-scale experiments were carried out to investigate the recovery of La(III) using as-prepared microemulsion from the simulation wastewater containing La(III),Al(III) and Fe(III). The right weight ratio(Rs) of OP-4 to OP-7 was firstly confirmed through determination of the solubilization capacity of HCl solution(W0,HCl) in microemulsion, the effect of several factors such as the HCl concentration, temperature and effective extraction time on the extraction efficiency of La(III) was discussed. Results showed that the acceptable Rs was 4:6 to prepare the W/O MEs. The extraction yield of La(III) increased with the increasing of HCl concentration, temperature and effective extraction time and reaches to 97.3% while using five-stage modules. The recovery yield of La(III) from simulation La-bearing wastewater was 90.6%.

Disturbing Effects of Chronic Low-dose 4-Nonylphenol exposing on Gonadal Weight and Reproductive Outcome over One-generation

  • Cha, Sunyeong;Baek, Jeong Won;Ji, Hye Jin;Choi, Jun Hee;Kim, Chaelim;Lee, Min Young;Hwang, Yeon Jeong;Yang, Eunhyeok;Lee, Sung-Ho;Jung, Hyo-il;Cheon, Yong-Pil
    • Development and Reproduction
    • /
    • v.21 no.2
    • /
    • pp.121-130
    • /
    • 2017
  • 4-Nonylphenol (NP) is a surfactant that is a well-known and widespread estrogenic endocrine disrupting chemical (EDC). Although it has been known that the affinity of NP to ERs is low, it has been suggested that low-dose NP has toxicity. In the present study, the endocrine disrupting effects on reproduction, and the weight of gonads, epididymis, and uterus were evaluated with the chronic lower-dose NP exposing. This study was designed by following the OECD test guideline 443 and subjected to a complete necropsy. In male, NP had an effect on the weight of the testis and epididymis in both $F_0$ and $F_1$. In females, NP decreased the weight of ovary and uterus in $F_0$ but not in pre-pubertal $F_1$ pubs. Fertility of male and female in $F_0$ or $F_1$ was no related with NP administration. The number of caudal-epididymal sperm by body weight (BW) was not different between groups in both $F_0$ and $F_1$. Besides, the difference of the sperm number between generations was not detected. The number of ovulated oocytes was similar between groups in $F_0$, but significantly decreased in NP 50 group of $F_1$. The litter size and sex ratios of offspring in $F_1$ and $F_2$ were not different. The accumulated mating rate and gestation period were not affected by the NP administration. Those results shows that chronic lower-dose NP administration has an effect of endocrine disruptor on the weight of gonads and epididymis of $F_0$ and $F_1$ but not in reproduction. Based on the results, it is suggested that chronic lower-dose NP exposing causes endocrine disruption in the weight of gonad and epididymis but not in the reproductive ability of next generations.