• Title/Summary/Keyword: 4-Nitrophenyl isonicotinate

Search Result 4, Processing Time 0.016 seconds

Kinetic Study on Aminolysis of 4-Nitrophenyl Isonicotinate in Acetonitrile: Effect of Amine Basicity on Reactivity and Reaction Mechanism

  • Shin, Minah;Kim, Min-Young;Um, Ik-Hwan
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.7
    • /
    • pp.2130-2134
    • /
    • 2014
  • A kinetic study is reported on nucleophilic substitution reactions of 4-nitrophenyl isonicotinate (7) with a series of cyclic secondary amines in MeCN. The plots of $k_{obsd}$ vs. [amine] curve upward for the reactions with weakly basic amines (e.g., morpholine, 1-(2-hydroxyethyl)piperazine, and piperazine) but are linear for those with strongly basic amines (e.g., piperidine and 3-methylpiperidine). The curved plots for the reactions with the weakly basic amines are typical for reactions reported previously to proceed through uncatalyzed and catalyzed routes with two intermediates (e.g., a zwitterionic tetrahedral intermediate $T^{\pm}$ and its deprotonated form $T^-$). In contrast, the linear plots for the reactions with the strongly basic amines indicate that the catalytic route (i.e., the deprotonation process to yield $T^-$ from $T^{\pm}$ by a second amine molecule) is absent. The Br${\o}$nsted-type plots for $Kk_2$ and $Kk_3$ (i.e., the rate constants for the uncatalyzed and catalyzed routes, respectively) exhibit excellent linear correlations with ${\beta}_{nuc}$ = 0.99 and 0.69, respectively. The effect of amine basicity on the reaction mechanism is discussed in detail.

Kinetic Study on Aminolysis of 4-Nitrophenyl Nicotinate and Isonicotinate: Factors Influencing Reactivity and Reaction Mechanism

  • Kim, Min-Young;Shin, Minah;Um, Ik-Hwan
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.8
    • /
    • pp.2443-2447
    • /
    • 2014
  • A kinetic study is reported on nucleophilic substitution reactions of 4-nitrophenyl nicotinate (7) and 4-nitrophenyl isonicotinate (8) with a series of cyclic secondary amines in $H_2O$ containing 20 mol % DMSO at $25.0^{\circ}C$. The Br${\o}$nsted-type plots for the reactions of 7 and 8 are linear with ${\beta}_{nuc}=0.90$ and 0.92, respectively, indicating that the reactions proceed through a stepwise mechanism with expulsion of the leaving group occurring in the rate-determining step. Comparison of the reactivity of 7 and 8 with that of 4-nitrophenyl benzoate (2a) and 4-nitrophenyl picolinate (6) has revealed that their reactivity toward the amines increases in the order 2a < 7 < 8 < 6, although the reactions of these substrates proceed through the same mechanism. Factors that control reactivity and reaction mechanism have been discussed in detail (e.g., inductive and field effects, H-bonding interaction, solvent effect, etc.).

Catalytic Effects of Co(Ⅲ) Complexes on the Hydrolysis of p-Nitrophenyl Picolinate (p-Nitrophenyl Picolinate의 가수분해에 대한 코발트(Ⅲ) 착물의 촉매효과)

  • Noh, Jae Geun;Kim, Chang Suk;Hong, Soon Yung
    • Journal of the Korean Chemical Society
    • /
    • v.40 no.4
    • /
    • pp.254-263
    • /
    • 1996
  • Five cobalt(Ⅲ) complexes were synthesized from bi- or tridentate nitrogen ligands. Catalytic actions of these complexes for hydrolyses of p-nitrophenyl picolinate, p-nitrophenyl nicotinate, and p-nitrophenyl isonicotinate were investigated by a spectrophotometric method. p-Nitrophenyl picolinate showed the most senstive reaction among three substrates by these catalysts. Aquohydroxo Co(Ⅲ) complexes raised as much as 21∼40 times the rate of hydrolysis of p-nitrophenyl picolinate at pH 6.5. Activities of complexes were in the order: Co(ibpn)(OH)2(OH2) > Co(aepn)(OH)2(OH2) > Co(tn)2(OH)(OH2) > Co (bpy)2(OH)(OH2) > Co(dien)(OH)2(OH2). Catalytic hydrolysis was postulated to proceed through a intramolecular general base catalysis path which is mixed by a partial intramolecular nucleophilic catalysis.

  • PDF

Metal Ion Catalysis and Inhibition in Nucleophilic Substitution Reactions of 4-Nitrophenyl Nicotinate and Isonicotinate with Alkali Metal Ethoxides in Anhydrous Ethanol

  • Choi, Seo-Young;Hong, Yeon-Ju;Um, Ik-Hwan
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.6
    • /
    • pp.1951-1956
    • /
    • 2011
  • A kinetic study is reported on nucleophilic substitution reactions of 4-nitrophenyl nicotinate 5 and isonicotinate 6 with alkali metal ethoxide EtOM (M = K, Na, and Li) in anhydrous ethanol at $25.0{\pm}0.1^{\circ}C$. Plots of pseudo-first-order rate constant $k_{obsd}$ vs. EtOM concentration exhibit upward curvature for the reactions of 5 and 6 with EtOK and EtONa but are almost linear for those with EtOLi. Dissection of $k_{obsd}$ into $k_{EtO^-}$ and $k_{EtOM}$ (i.e., the second-order rate constant for the reaction with dissociated $EtO^-$ and ion-paired EtOM, respectively) has shown that $k_{EtOK}$ ${\geq}$ $k_{EtONa}$ > $k_{EtO^-}$ but $k_{EtOLi}$ < $k_{EtO^-}$. It has been concluded that $K^+$ and $Na^+$ ions catalyze the reactions by increasing the electrophilicity of the carbonyl carbon atom through formation of a 4-membered cyclic transition state $TS_3$ or $TS_4$. However, $M^+$ ion catalysis has been found to be much less significant for the reactions of 5 and 6 than for the corresponding reactions of 4-nitrophenyl picolinate 4, which was reported to proceed through a 5-membered cyclic transition state $TS_2$. Although 5 and 6 are significantly more reactive than 4-nitrophenyl benzoate 3, the reactions of 5 and 6 result in smaller $k_{EtOK}/k_{EtO^-}$ ratios than those of 3. The electron-withdrawing ability of the nitrogen atom in the acyl moiety of 5 and 6 has been suggested to be responsible for the increase in reactivity and the decrease in the $k_{EtOK}/k_{EtO^-}$ ratio.