• Title/Summary/Keyword: 4-Legged Robot

Search Result 55, Processing Time 0.028 seconds

A Study on Trot Walking for Quadruped Walking Robot (4족 보행로봇의 Trot 보행에 관한 연구)

  • Bae Cherl-O;Ahn Byeong-Won;Kim Hyun-Soo
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.8 no.7
    • /
    • pp.1418-1423
    • /
    • 2004
  • A legged robot is friendly to human because it is resemble to human. And the robot can obtain support points freely because it has high degree of freedom for several joint as compared with a wheeled robot. Also the robot can create the relative position at desired position between support position and robot. The joint of robot cu used as manipulator. On the contrary the mechanism of robot is complicated to have many joint and moving speed is lower than wheeled robot. Also the legged robot is needed a special control not to fall on the ground because the robot is easy to vibrate when it is moving. The 4 leg structure is the minimum leg numbers not to fall and to realize safety gait continuously. A trot gait is investigated through experiments using a quadruped walking robot named TITAN-VIII.

Analysis on Boundary Condition for Standing Balance of Four-Legged Robots (4족 로봇의 정지 밸런스를 위한 경계 조건 분석)

  • Kim, Byoung-Ho
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.21 no.6
    • /
    • pp.673-678
    • /
    • 2011
  • This paper analyzes the standing balance of four-legged robots which are useful for delivering objects or investigating of information. For this, we specify an effective model of general four-legged robots and propose a boundary condition based on the standing stability of the four-legged walking. To verify such a standing balance, we consider some exemplary free motions at the standing mode of the robot and discuss on the robot's balance margin. The analysis specified in this paper will be applicable for effective balancing control of various quadruped robotic walking.

Parameters for Min. Time and Optimal Control of Four-Legged Mobile Robot (4-족 이동로보트의 최소시간 최적제어를 위한 파라메터 연구)

  • 박성호
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.04b
    • /
    • pp.490-496
    • /
    • 1995
  • A four-legged mobile robot can move on the plain terrain with mobility and stability, but if there exist any obstacles on the terrain of the motion direction, it takes extra times for a mobile robot to cross those obstacles and the stability should be considered during motion. The main objevtive is the study of a quadruped which can cross obstacles with better mobility, stability and fuel economy than any other wheeled or tracked vehicles. Vertical step, isolated wall and ditch are the basic obstacles and by understanding those three cases perfectly, a quadruped can move on any mixed rough terrain as 4-legged animal moves. Each leg of a determine the crossing capability in a static analysis. A quadruped can be simplified with links and joints. By applying the research method, a quadruped can determine the control procedures as soon as it receives the terrain informations from scanner and finally can be moved as animals move with mobility and stability.

  • PDF

Mobility and Agility of Multi-legged Walking Robot System (다족 보행 로봇 시스템의 이동성 및 민첩성)

  • Shim, Hyung-Won;Lee, Ji-Hong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.14 no.11
    • /
    • pp.1146-1154
    • /
    • 2008
  • This paper presents a method for the acceleration analysis of multi-legged walking robots in consideration of the frictional ground contact. This method is based on both unified dynamic equation for finding the acceleration of a robot's body and constraint equation for satisfying no-slip condition. After the dynamic equation representing relationship between actuator torques and body acceleration, is derived from the force and acceleration relationship between foot and body's gravity center, the constraint equation is formulated to reconfigure the maximum torque boundaries satisfying no-slip condition from given original actuator torque boundaries. From application of the reconfigured torques to the dynamic equation, interested acceleration boundaries are obtained. The approach based on above two equations, is adapted to the changes of degree-of-freedoms of legs as well as friction of ground. And the method provides the maximum translational and rotational acceleration boundaries of body's center that are achievable in every direction without occurring slipping at the contact points or saturating all actuators. Given the torque limits in infinite normsense, the resultant accelerations are derived as a polytope. From the proposed method, we obtained achievable acceleration boundaries of 4-legged and 6-legged walking robot system successfully.

Obstacle Avoidance of Quadruped Robots with Consideration to the Order of Swing Leg

  • Yamaguchi, Tomohiro;Watanabe, Keigo;Izumi, Kiyotaka;Kiguchi, Kazuo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.645-650
    • /
    • 2003
  • Legged robots can avoid an obstacle by crawling-over or striding, according to the obstacle’s nature and the current state of the robot. Thus, it can be observed that the mobility efficiency to reach a destination is improved by such action. Moreover, if robots have many legs like 4-legged or 6-legged types, then the robot movement range is affected by the order of swing leg. In this paper, the avoidance action of a quadruped robot is generated by a neural network (NN) whose inputs are information on the position of the destination, the obstacle configuration and the robot's self-state. To realize a free gait in static walking, the order of swing leg is determined using an another NN whose inputs are the amount of movements and the robot’s self-state. The design parameter of the latter NN is adjusted by using genetic algorithm (GA).

  • PDF

Design of Walking Robot Based on Jansen Mechanism (얀센 메커니즘 기반의 보행로봇 설계)

  • Ko, Jiwoo;Jo, Wonbin
    • Proceeding of EDISON Challenge
    • /
    • 2016.03a
    • /
    • pp.429-433
    • /
    • 2016
  • Moving robot is divided 2 kinds; one is the robot using wheels and the other has leg structure. On plat terrain, the former is better than the latter because it has fast speed and simple method to control. But on non-plat terrain, the situation is reversed. The robot using legs has slow speed but it has advantage to adjust various environments. This robot is expected to contribute to human in many fields such as rescue and exploration and so on. So walking robot is worth enough to research. In this paper, we present the design of 4-legged walking robot based on Jansen mechanism using m-Sketch and Edison Designer.

  • PDF

Analysis of dynamic manipulability for four-legged walking robot (4족 보행 로봇의 동적 조작도 해석)

  • 이지홍;전봉환;조복기
    • Proceedings of the IEEK Conference
    • /
    • 2003.07c
    • /
    • pp.2721-2724
    • /
    • 2003
  • This paper deals with a manipulability analysis of multi-legged walking robots in acceleration domain, that is the dynamic manipulability analysis of walking robot. Noting that the kinematic structure of the walking robot is basically the same with that of the multiple serial robot system holding one object, the analysis method for cooperating robot is converted to that of walking robot. With the proposed method, the bound of achievable acceleration of the moving body is easily derived from the given bounds on the capabilities of Joint torques. Several walking robot examples are analyzed with proposed method under the assumption of hard contact, and presented in the paper to validate the method.

  • PDF

Development of Quadrupedal Robot Mimicking the Motion of Snake (뱀의 구동원리를 이용한 4족보행 로봇의 개발)

  • Kim, Seonghyeon;Kim, Yeseung;Kim, Minsong;Song, Jinhyeok;Yun, Dongwon
    • The Journal of Korea Robotics Society
    • /
    • v.14 no.3
    • /
    • pp.196-202
    • /
    • 2019
  • Snake robots are slower than wheeled robots or legged robots, while they have an excellent terrainability in a disastrous area. Considering their advantages and disadvantages, a legged robot whose legs are snake robots, 'Quadnake' was proposed in this research. Five motions of the snake were analyzed. Applying these motions, Quadnake could implement eight kinds of motions which snake robots and quadruped walking robots can implement. As a result of it, Quadnake can have the advantages of both a snake robot and a walking robot. It is expected to move stably in a harsh terrain with snake's motion and move fast with walking.

A Development of 4-legged Walking Machine and the Enhancement of Static Stability Margin Using Balancing Weight (사각 보행 로보트의 제작 및 균형추를 이용한 안정성 향상에 관한 연구)

  • 강신천;오준호;정경민
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1991.11a
    • /
    • pp.146-154
    • /
    • 1991
  • As the application of robotic systems expand its scope, more research efforts are given in providing mobility to the robotic systems so that they can travel across various paths including those with formidable obstacles such as stairways or rough terrains. Legged locomotion is mainly concerned because the walking motion, like that of animal behavior, has many advantages over wheel type or track type locomotion especially in rough terrain. Walking robot, in general, having a discrete number of legs, have inherently low static stability. Static stability can be increased to a certain degree, by improving walking method, but it has many limitations such as reduced travel speed. A very promising possibility lies in the use of balancing weight, nevertheless its actual implementation is very rare. In this study, a 4-legged walking machine is developed and the static stability margin is increased with the balancing weight. In the future, this robot will be used to take an experiment on the walking in mush terrain.

  • PDF

A Study on the Gait Control of a 4-Legged Walking Robot on Irregular Terrain (부정지형에서 4각 보행로보트의 걸음새 제어에 관한 연구)

  • Seong, Il;Moon, Young-Hyun
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.25 no.7
    • /
    • pp.723-733
    • /
    • 1988
  • In this paper, A model of 4-legged walking robot is presented by investigating the gait of animals, which can walk with maintaining static stability on irregular terrain. Kinematices of the model robot was analyzed by geometric approach, and a gait control algorithm is proposed for the effective walking on irregular terrain. Terrains are classified into 4 types in order to study the terrain adaptability of the proposed algorithm and it is simulated for each type of terrain.

  • PDF