• Title/Summary/Keyword: 4-Hydroxybenzoic acid

Search Result 98, Processing Time 0.026 seconds

Phytochemical Contents and Antioxidant Activities of Opuntia ficus-indica var. saboten (보검선인장의 Phytochemical 함량 분석 및 항산화 활성)

  • Jeong, Yun Sook;Lee, Sang Hoon;Song, Jin;Hwang, Kyung-A;Noh, Geon Min;Jang, Da Eun;Hwang, In Guk
    • The Korean Journal of Food And Nutrition
    • /
    • v.29 no.5
    • /
    • pp.767-776
    • /
    • 2016
  • The aim of this study was to evaluate key properties of the prickly pear cactus (Opuntia ficus-indica var. saboten (OFI) ie, levels of key chemicals (carotenoids, flavonoids and polyphenolic compounds as well as phenolic acid) and its antioxidative potential, depending on where the plant had been cultivated in Korea. The levels of flavonoids and polyphenolic compounds in OFI were 55.45~65.32 mg (+)-catechin/g and 149.00~181.15 mg gallic acid/g, respectively. Protocatechuic acid was the most abundant phenolic acid in the ON1 and ON2 (161.90 and $196.25{\mu}g/g$ DW (dry weight)). Nineteen flavonoids were identified and analyzed by LC-ESI-MS in cladodes from OFI. Narcissin was the most abundant flavonoid in all of the samples ($1,241.89{\sim}1,775.10{\mu}g/g$ DW). Capxanthin and zeaxanthin were the most abundant carotenoids in OFI (64.88~128.08 and $48.10{\sim}93.82{\mu}g/g$ DW). The level of DPPH radical and ABTS radical scavenging activities in OFI were 10.78~25.35 and 16.85~34.16 mg AA eq/100 g, respectively. OFI by cultivar has different kind of phenolic acid, flavonoids, and carotenoids. Therefore, dietary intake of cladodes from OFI may be helpful for improving human health.

Effects of Major Phenolic Acids Identified from Barley Residues on the Germination of Paddy Weeds (보리 잔여물(殘餘物)속에 함유(含有)된 주요(主要) Phenolic Acids가 논 잡초(雜草) 발아(發芽)에 미치는 영향(影響))

  • Kwak, S.S.;Kim, K.U.
    • Korean Journal of Weed Science
    • /
    • v.4 no.1
    • /
    • pp.39-51
    • /
    • 1984
  • Effects of major phenolic acids identified from barley residues (straw, root) on the germination of rice and 3 paddy weeds such as Echinochloa crusgalli, Cyperus serotinus, and Potamogeton distintus were evaluated to obtain the basic informations on the development of naturally occurring herbicides. The predominant phenolic compounds extracted from barley residues in both straw and root were identified as p-coumaric, p-hydroxybenzoic, ferulic, vanillic, and salicylic acids by means of paper chromatography. Total phenol content of barley straw and root at the harvesting stage was 0.169% and 0.127% per dry weight, respectively. During the decomposing process, total phenol content slightly increased and then decreased. The germination of test plants was inhibited by treatments of 4 major authentic phenolic acids identified, most significantly on rice, and less on E. crusgalli, and C. serotinus. P. distintus, however, was markedly stimulated by them as the concentration increased, and then sprouted buds of pondweeds were changed to dark brownish color, resulting in the death as the treatment prolonged. The greater inhibitory effect appeared on shoot growth rather than germination. The aqueous extracts of barley residues showed the similar inhibitory effect on the germination and shoot growth of rice and three paddy weeds as the treatments of 4 authentic phenolic acids.

  • PDF

Allelopathic Effects of Crimson Clover, Hariy Vetch and Rye on Germination and Radicle Elongation of Several Crops (크림손클로버, 헤어리베치, 호밀 추출물이 몇 가지 작물의 종자 발아와 유근 생장에 미치는 allelopathy 효과)

  • Lee, Ji-Hyun;Lee, Byung-Mo;Jeon, Seung-Ho;Chung, Jong-Il;Kim, Min-Chul;Shim, Sang-In
    • Korean Journal of Weed Science
    • /
    • v.30 no.4
    • /
    • pp.371-379
    • /
    • 2010
  • Crimson clover (Trifolium incarnatum), hairy vetch (Vicia villosa) and rye (Secale cereale) are common leguminous cover crops. Because they contain water-soluble allelopathic substances that show a variable level in tissue depending on growth stage of the plants, the weed inhibition effects are dependent on the growth stage of cover crops. This study investigated the allelopathic effects of crimson clover, hairy vetch and rye on soybean, radish, oilseed rape and lettuce seeds germination and seedling growth. We used extract that were prepared from the shoots of crimson clover, hairy vetch and rye at different growth stages, vegetative growth stage, flowering stage, and fruiting stage. Applications of aqueous extracts from three growth stage of cover crops strongly affected to oilseed rape and lettuce seeds germination but the treatment resulted in a slight inhibition of the germination in soybean and radish. Radical length was more sensitive to aqueous extracts than seed germination rate. Especially, three cover crops extracts at vegetative growth stage highly inhibited seedling root growth of oilseed rape and lettuce by over 80% and 90% respectively. Furthermore, the $GR_{50}$ values were lowest in the treatment of extracts from vegetative growth stage and the level of phenolics was decreased by the order of vegetative growth stage, flowering stage and fruiting stage.

Endocrine Disrupting Activities of Parabens: An Overview of Current Databases on Their Estrogenicity

  • Dang, Vu Hoang;Jeung, Eui-Bae
    • Journal of Embryo Transfer
    • /
    • v.23 no.4
    • /
    • pp.229-237
    • /
    • 2008
  • Recently, parabens have been believed to act as xenoestrogens, an identified class of endocrine disruptors (EDs). These environmental compounds are the most well-known as preservatives in many commercial products, including food, cosmetics and pharmaceutical industries. It has been demonstrated that the human health risks of parabens result from a long-term exposure to skin in which this chemical group is rapidly absorbed through the skin. On the other hand, parabens are also completely absorbed from gastrointestinal tract. It has reported that these substances possess several biological effects in which inhibitory property involved in membrane transports and mitochondrial functions is considered to be important for their action. Testing of parabens has revealed that estrogen-like activities of these chemicals are much less potent than natural estrogen, $17{\beta}$ estradiol (E2). Additionally, the estrogenicity of individual paraben- compounds is distinct depending upon their biochemical structure. Recent findings of paraben-estrogenic activities have shown that these compounds may affect breast cancer incidence in women, suggesting adverse ecological outcomes of this environmental group on human and animal health. Although the biological and toxicological effects of parabens have been demonstrated in many previous studies, possible mechanism(s) of their action are required to be explored in order to bring the better understanding in the detrimental impacts of parabens in human and wildlife. There have several different types of parabens which are the most widely used as preservatives. These include methyl-paraben, ethylparaben, propylparaben, butylparaben and p-hydroxybenzoic acid, a major metabolite of parabens. In this review, we summarize current database based on in vitro and in vivo assays for estrogenic activities and health risk assessment of paraben- EDs which have been published previously.

Non-Ionic Surfactants Antagonize Toxicity of Potential Phenolic Endocrine-Disrupting Chemicals, Including Triclosan in Caenorhabditis elegans

  • Alfhili, Mohammad A.;Yoon, Dong Suk;Faten, Taki A.;Francis, Jocelyn A.;Cha, Dong Seok;Zhang, Baohong;Pan, Xiaoping;Lee, Myon-Hee
    • Molecules and Cells
    • /
    • v.41 no.12
    • /
    • pp.1052-1060
    • /
    • 2018
  • Triclosan (TCS) is a phenolic antimicrobial chemical used in consumer products and medical devices. Evidence from in vitro and in vivo animal studies has linked TCS to numerous health problems, including allergic, cardiovascular, and neurodegenerative disease. Using Caenorhabditis elegans as a model system, we here show that short-term TCS treatment ($LC_{50}$: ~0.2 mM) significantly induced mortality in a dose-dependent manner. Notably, TCS-induced mortality was dramatically suppressed by co-treatment with non-ionic surfactants (NISs: e.g., Tween 20, Tween 80, NP-40, and Triton X-100), but not with anionic surfactants (e.g., sodium dodecyl sulfate). To identify the range of compounds susceptible to NIS inhibition, other structurally related chemical compounds were also examined. Of the compounds tested, only the toxicity of phenolic compounds (bisphenol A and benzyl 4-hydroxybenzoic acid) was significantly abrogated by NISs. Mechanistic analyses using TCS revealed that NISs appear to interfere with TCS-mediated mortality by micellar solubilization. Once internalized, the TCS-micelle complex is inefficiently exported in worms lacking PMP-3 (encoding an ATP-binding cassette (ABC) transporter) transmembrane protein, resulting in overt toxicity. Since many EDCs and surfactants are extensively used in commercial products, findings from this study provide valuable insights to devise safer pharmaceutical and nutritional preparations.

Phytochemical Constituents from the Leaves of Soybean [Glycine max (L.) Merr.]

  • Lee, Jin-Hwan;Baek, In-Youl;Choung, Myoung-Gun;Ha, Tae-Joung;Han, Won-Young;Cho, Kye-Man;Ko, Jong-Min;Jeong, Seong-Hun;Oh, Ki-Won;Park, Keum-Yong;Park, Ki-Hun
    • Food Science and Biotechnology
    • /
    • v.17 no.3
    • /
    • pp.578-586
    • /
    • 2008
  • Phytochemicals study from the leaves of soybean [Glycine max (L.) Merr.], one of Korean edible plant materials were investigated through various chromatographic procedures. The methanolic leaves extracts of soybean yielded 16 phytochemicals, including 5 isoflavones 1-5, 3 flavones 6-8, 1 flavonol 9, 2 pterocarpans 10 and 11, 2 phenolic compounds 12 and 13, 2 phytosterols 14 and 15, and 1 sugar alcohol 16. The structures were fully characterized by analysis of physical and spectral data and were defined clearly as 4,5,7-trihydroxyisoflavone (1), 4,5,7-trihydroxyisoflavone-7-O-$\beta$-D-glucopyranoside (2), 4,7-dihydroxy-6-methoxyisoflavone (3), 4,7-dihydroxyisoflavone (4), 4,7-dihydroxyisoflavone-7-O-$\beta$-D-glucopyranoside (5), 5,7,4'-trihydroxyflavone (6), 3',4',5,7-tetrahydroxyflavone (7), 3',4',5-trihydroxyflavone-7-O-$\beta$-D-glucopyranoside (8), 3,4',5,7-tetrahydroxyflavonol (9), coumestrol (10), glyceofuran (11), 4-hydroxybenzoic acid (12), methyl-4-hydroxybenzoate (13), soyasapogenol B (14), stigmasterol (15), and D-mannitol (16), respectively. Among them, phytochemicals 7-16 were reported for the first time on the isolation and confirmation from the leaves of this species. These results suggest that the leaves extracts of soybean may possess possible health related benefits to human due to the isolated phytochemicals 1-16 which have been well known potential effects on various chronic diseases.

Isolation of Acinetobacter calcoaceticus BP-2 Capable of Degradation of Bisphenol A (Bisphenol A 분해균주 Acinetobacter calcoaceticus BP-2의 분리 및 bisphenol A 분해 특성)

  • Kwon, Gi-Seok;Kim, Dong-Geol;Lee, Jung-Bok;Shin, Kee-Sun;Kum, Eun-Joo;Sohn, Ho-Yong
    • Journal of Life Science
    • /
    • v.16 no.7 s.80
    • /
    • pp.1158-1163
    • /
    • 2006
  • Bisphenol A (BPA), 2,2-bis(4-hydroxyphenyl) propane, has been widely used as a monomer for production of epoxy resins and polycarbonate plastics, and final products of BPA include adhesives, protective coatings, paints, optical lens, building materials, compact disks and other electrical parts. Since BPA is a toxic chemical to elicit acute cell cytotoxicity and chronic endocrine disrupting activity, the degradation of BPA has been focused during last decades. To overcome the problem of photo-, and chemical-degradation of BPA, in this study, a bacterium that is able to biodegrade BPA, was isolated. The bacterium, isolated froln the soil of plastic factory, was identified as Acinetobacter calcoaceticus (strain BP-2) based on physiological and 16S rDNA sequencing analysis. A. calcoaceticus BP-2 was able to grow in the presence of $1140{\mu}g\;ml^{-1}$ BPA. Biodegradation experiments showed that BP-2 mineralized BPA via 4-hydroxybenzoic acid and 4-hydroxyacetophenone, and average degradation rate was $53.3{\mu}g\;ml^{-1}\;day^{-1}$ under optimal conditions (pH 7 and $30^{\circ}C$). In high density resting cell $(3.5g-dcw.1^{-1})$ experiments, the maximal degradation rate was increased to $89.7{\mu}g\;ml^{-1}\;h^{-1}$. Our results suggest that BP-2 has high potential as a catalyst for practical BPA bioremediation.

Studies on the Cause of Injury by Continuous Cropping and the Effect of Soil Conditioner on Red pepper (Capsicum annuum L.) II. Effects of Soil Conditioners Applied on Continuous Cropping Fields (고추의 연작(連作) 장해(障害) 요인(要因)과 토양개량제(土壤改良劑) 시용효과(施用效果) II. 연작지(連作地) 토양개량제(土壤改良劑) 시용효과(施用效果))

  • Hwang, Nam-Yul;Ryu, Jeong;Na, Jong-Seong;Kim, Jin-Key
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.22 no.3
    • /
    • pp.205-214
    • /
    • 1989
  • The present experiment was conducted to investigate effects of soil conditioner applied on continuous cropping fields of red pepper from 1985 to 1986 in Imsil, Chunbuk province. 1. The ratios of bacteria/fungi (B/F) and actinomycetes/fungi (A/F) in the soils of continuous cultivation were increased with application of phytotoxin decomposers such as deep tillage (De), compost (Co), magnesium lime (Mg), gypsum silicate, and De + Co + Mg. 2. Degradation of phytotoxin (p-hydrohylenyons aeid) in the continuous soils was promoted with application of De, Co, Mg, gypsum, silicate and De + Co + Mg resulting in yield increase. 3. The infection rate plant by phytophthora were decreased with deep tillage and application of compost and magnesium lime and caused the increase of yield (22%) due to the increase of fruit per hill.

  • PDF