• 제목/요약/키워드: 4-Cylinder Engine

검색결과 474건 처리시간 0.022초

크랭크 각 기준의 엔진 제어시스템 설계.제작에 관한 연구 (A Study on Design and Development of an Engine Control System Based on Crank Angle)

  • 윤팔주;김명준;선우명호
    • 한국자동차공학회논문집
    • /
    • 제6권4호
    • /
    • pp.198-210
    • /
    • 1998
  • A crank angle-based engine control system has been developed for use as an engine research tool to provide precise control of the fuel injection(timing and duration) and ignition(timing and dwell) in real-time. The engine event information is provided by the engine shaft encoder, and the engine control system uses this information to generate spark and injector control signals for relevant cylinders. Eight different engine types and four different rotary encoder resolutions can be accommodated by this system. Also this system allows a user to individually control the ignition and fuel injection for each cylinder in a simple manner such as through a keyboard or in a real-time operation from a closed-loop control program.

  • PDF

천연가스 전소엔진과 가솔린엔진의 성능과 배출가스 특성비교 (The Comparison of Performance and Emission Characteristics between CNG Engine and Gasoline Engine)

  • 김진영;박원옥;정성식;하종률
    • 한국자동차공학회논문집
    • /
    • 제11권2호
    • /
    • pp.16-21
    • /
    • 2003
  • Natural gas is one of the promising alternative fuels because of the abundant deposits and the cleanness of emission gas. It can be used in conventional gasoline engine without major modification. Natural gas has some advantages than gasoline i.e. the high octane number, good mixing condition because of gas and wide inflamable limit. In the present study, a $1.8{\ell}$ conventional gasoline engine is modified for using the CNG as a fuel instead of gasoline. Performance and emission characteristics are compared between gasoline and CNG with 4 cylinder SI Engine which is controlled by programable ECU. Parameters of experimentation are equivalence ratio, spark timing and fuels. We analyzed the combustion characteristics of the engine using the cylinder pressure i.e. ignition delay, combustion duration and cycle variation. As a result, CNG engine shows lower exhaust emissions but brake torque is slightly reduced compared to gasoline engine. Overall combustion duration is longer than that of gasoline because of lower burning speed.

Fabrication of Hollow Cylinder Tank Using Superplastic Forming Technology

  • Lee, Ho-Sung;Yoon, Jong-Hoon;Yi, Yeong-Moo
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2008년 영문 학술대회
    • /
    • pp.799-803
    • /
    • 2008
  • The possibility of manufacturing titanium hollow cylinder tank for ramjet engine was demonstrated with superplastic forming of subscale article. An innovative manufacturing method to produce complex configuration from titanium multi-sheets by low hydrostatic pressure was presented. Finite element analysis on superplastic blow forming process has been carried out in order to improve the forming process when manufacturing subscale hollow cylinder structure using Ti-6Al-4V multi-sheets. The simulation focused on the reduction of forming time and obtaining finally required shape throughout investigating the deformation mode of sheet according to the forming conditions and die geometry. From pre-sized titanium sheets, near net shape of hollow cylinder tank is obtained by superplastic blow forming conducted using gas pressure of 15bar at 1148K. The result shows that the manufacturing method with superplastic forming of multi-sheets of titanium alloy has been successful for near net shape forming of subscale hollow cylinder tank of ramjet engine.

  • PDF

이중분사식 수소기관 연소실내 가스의 순간열전달계수의 측정 (Measurement of Transient Heat Transfer Coefficient of In-cylinder Gas in the Hydrogen Fueled Engine with Dual Injection System)

  • 위신환;김윤영;이종태
    • 한국수소및신에너지학회논문집
    • /
    • 제12권4호
    • /
    • pp.267-275
    • /
    • 2001
  • To clear the differences of heat transfer coefficient of in-cylinder gas with fuel properties, the transient heat transfer coefficient of hydrogen gas is investigated by using the hydrogen fueled engine. The measured results were also compared with those of gasoline engine and several empirical equations. Transient heat transfer coefficients were determined by measurements of unsteady heat flux and instantaneous wall temperature in the cylinder head. As the main results, it is shown that transient heat transfer coefficients have remarkable differences according to fuel properties, and it's value for hydrogen engine is twice higher than that of gasoline engine. It means that equation of heat transfer coefficient that the effect of fuel properties is considered sufficiently, is needed to analyze or simulate the gas engine performance.

  • PDF

Variations of swirl center according to evaluation position in steady flow bench of SI engine

  • Lee, Sukjong;Sung, Jaeyong;Ohm, In Yong
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제38권10호
    • /
    • pp.1263-1268
    • /
    • 2014
  • In this study, the variations of swirl center according to evaluating position have been investigated in a steady flow bench of SI engine. For the experiments, two engine heads with different intake valve angles ($11^{\circ}$ and $26^{\circ}$) were tested in the flow bench by varying the evaluating position (1.75~6.0B) and valve lift (2~10 mm). Particle image velocimetry was used to measure the velocity field inside the engine cylinder. The swirl center position is found with a critical point theory and the intensity of turbulence is calculated from PIV velocity data. The results show that the center of swirl is located closer to the center of cylinder and turbulence intensity is lower, when the intake valve angle is the smaller. It is conventional to evaluate the swirl ratio at 1.75B position in the steady flow bench of SI engine. At this position, however, the distance of swirl center from the cylinder center scatters significantly for the variation of valve lift, and the turbulence intensity is much stronger regardless of the valve angle. Thus, to estimate the flow at the end of compression stroke in a real engine from the data in the steady flow experiments, the evaluation position should be moved further downstream more than 4.5B.

선박에서 진동제어를 위한 디젤엔진 기진력의 최적화 (Optimization of Excitation Forces Produced by the Diesel Engine for Vibration Control in Ships)

  • 박정근;정의봉
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2003년도 추계학술대회논문집
    • /
    • pp.1018-1025
    • /
    • 2003
  • The diesel engine is often a serious excitation source in ships. Both the varying cylinder gas forces and the reciprocating and rotating mass forces associated with the crank and the connecting rod mechanism produce ample possibilities for excitation of the engine structure itself, the shafting, the surrounding substructures as well as the hull girder. This paper presents a guide for optimization of excitation forces produced by the marine propulsion 2-stroke diesel engine. The computational program for predicting the excitation forces is developed and applied to 2-stroke in-line engines. The object function is defined as the work done by every cylinder excitation force which is related to the mode shape of the diesel engine system, especially in the torsional vibration of the shafting. As a practical application of the presented method, the crank angle of 7 cylinder 2-stroke engine is optimized to reduce torsional vibration stresses on the shafting. Compared with the regular firing angle, about 60% of the 4th order torsional vibratory stress on the propeller shaft can be reduced by optimizing the crank angle irregularly. The usefulness of the presented optimization method is confirmed by the measurements.

  • PDF

진동제어를 위한 엔진 기진력의 최적화 (Optimization of Engine Excitation Forces for Vibration Control)

  • 정의봉;유완석;박정근
    • 한국소음진동공학회논문집
    • /
    • 제14권8호
    • /
    • pp.709-717
    • /
    • 2004
  • The diesel engine is often a serious excitation source in ships. Both the varying cylinder gas forces and the reciprocating and rotating mass forces associated with the crank and the connecting rod mechanism produce ample possibilities for excitation of the engine structure itself, the shafting, the surrounding substructures as well as the hull girder. This paper presents a guide for optimization of excitation forces produced by the marine propulsion 2-stroke diesel engine. The computational program for predicting the excitation forces is developed and applied to 2-stroke in-line engines. The object function is defined as the work done by every cylinder excitation force which is related to the mode shape of the diesel engine system, especially in the torsional vibration of the shafting. As a practical application of the presented method. the crank angle of 7 cylinder 2-stroke engine is optimized to reduce torsional vibration stresses on the shafting. Compared with the regular firing angle, about 60 % of the 4th order torsional vibratory stress on the propeller shaft can be reduced by optimizing the crank angle irregularly. The usefulness of the presented optimization method is confirmed by the measurements.

선박용 엔진의 흡기포트 형상에 따른 텀블 및 내부 유동 특성에 관한 수치적 연구 (A Numerical Study on the Characteristics of Tumble and Internal Flow According to Intake Port for Marine Engine)

  • 이병화;장영준;전충환
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제32권4호
    • /
    • pp.498-505
    • /
    • 2008
  • Many researches have been studied on in-cylinder flow as one of dominant effects for an engine combustion. The combustion phenomena of reciprocating engine is one of the most important processes affecting performance and emissions. One effective way to improve the engine combustion is to control the motion of the charge inside a cylinder by means of optimum induction system design. It is believed that the tumble and swirl motion generated during intake breaks down into small-scale turbulence in the compression stroke of the cycle. However, the exact nature of their relationship is not well known. To know this relationship definitely, this paper describes analytical results of the tumble motion, swirl motion, turbulence intensity, turbulence inside the cylinder of marine engine. 3-D computation has been performed by using STAR-CD solver and es-ice.

실린더 헤더의 가속도 신호를 이용한 선박용 디젤엔진의 연소 상태 모니터링 (Combustion Condition Monitoring of the Marine Diesel Engine using Acceleration Signal of Cylinder Head)

  • 서종철;김상환;이돈출
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2009년도 추계학술대회 논문집
    • /
    • pp.607-610
    • /
    • 2009
  • The abnormal combustion in the running engine results to knocking which increases the pressure and temperature in the cylinder, thereby decreasing the generated power by reducing the thermal efficiency. When the temperature and pressure in the cylinder increased rapidly by knocking, abnormal combustion takes place and the engine power is decreased. To investigate the knocking phenomenon, accelerometers are installed in the cylinder head to monitor and diagnose the vibration signal. As method of signal analysis, the time-frequency analysis method was adapted for acquisition of vibration signal and analyzes engine combustion in the short time. In this experiment, after analyzing time data which is stored in the signal recorder in one unit work (4 strokes: 2 revolutions), the signal with frequency and Wavelet methods with extracted one engine combustion data was also analyzed. Then, normal condition with no knocking signal is analyzed at this time. Hereafter, the experiments made a standard for distinguishing normal and abnormal condition to be carried out in acquisition of vibration signal at all cylinders and extracting knocking signal. In addition, analyzing methods can be diverse with Symmetry Dot Patterns (SDP), Time Synchronous Average (TSA), Wigner-Ville Distribution (WVD), Wigner-Ville Spectrum (WVS) and Mean Instantaneous Power (MIP) in the cold test [2]. With signal processing of vibration from engine knocking sensor, the authors adapted a part of engine /rotor vibration analysis and monitoring system for marine vessels to prevent several problems due to engine knocking

  • PDF

흡배기 관내의 비정상 유동을 고려한 4사이클, 4기통 전기.점화 기관의 성능 예측에 관한 연구 (A study on the performance prediction of 4 cycle 4 cylinder S.I. engine considering the unsteady flow in the intake and exhaust pipes)

  • 박성서;김응서
    • 오토저널
    • /
    • 제13권6호
    • /
    • pp.72-81
    • /
    • 1991
  • In this study, the analytic investigation of the unsteady flow in the intake and exhaust pipes has been carried out using the method of characteristics in one direction to predict volumetric efficiency. Based on the calculated volumetric efficiency, three zone predictive analysis using Wiebe function was applied to predict the engine performance and the results were compared with experiment. Mixture in the cylinder is subdivided into three zones during combustion process in this analysis; adiabatic core zone, thermal boundary layer zone and unburned zone. In each zone, pressure, temperature and gas composition have been calculated. In conclusion, it is possible to take account of the intake and exhaust pipe tuning effect in predicting the engine performance, by the analytic solution of the unsteady flow in the pipes, and comparison of prediction with experimental results shows a good agreement on the pressure variation in the intake and exhaust pipes which has a direct influence on the volumetric efficiency and performance of the engine.

  • PDF