• Title/Summary/Keyword: 4-Biphenylamine

Search Result 1, Processing Time 0.015 seconds

Analysis of Gene Expression in Carcinogen-induced Acute Hepatotoxicity

  • Oh, Jung-Hwa;Park, Han-Jin;Lee, Eun-Hee;Heo, Sun-Hee;Cho, Jae-Woo;Kim, Yong-Bum;Yoon, Seok-Joo
    • Molecular & Cellular Toxicology
    • /
    • v.5 no.1
    • /
    • pp.58-66
    • /
    • 2009
  • The 2-year rodent carcinogenicity test involves long-term, repetitive dosing of animals that is both time consuming and expensive. Alternative approaches have been attempted using specific transgenic or knockout mice or toxicogenomics to predict carcinogenicity without conducting a 2-year rodent test. In addition, toxicogenomic analysis of carcinogen-treated animals could also enhance our understanding of molecular mechanisms and aid in the diagnosis of acute toxicity induced by carcinogens. Therefore, we investigated transcription profiles after administering the carcinogens 4,4-dimethylformamide (DMF) and 4-biphenylamine (ABP). BALB/c male mice were treated once with DMF (650 mg/kg i.p.) or ABP (120 mg/kg p.o.). Standard blood biochemistry and histological changes were observed. Gene expression profiles in the livers of mice treated with either vehicle or the carcinogens were analyzed using the Affymetrix $GeneChip^{(R)}$ assay. In all, 1,474 differentially expressed genes in DMF- or ABP-treated mice were identified as being either up- or down-regulated over 1.5-fold (P< 0.01), and these genes were analyzed using hierarchical clustering and Ingenuity Pathways Analysis. Of these, 107 genes were consistently regulated in both carcinogen-treated groups. Genes associated with cancer were upregulated (Por, S100a10, Tes, Ctcf, Ddx21, Eapp, Nel, and Pa2g4) or downregulated (Cbs and Gch1). Toxicological function analysis also identified genes involved in organ toxicity, including hepatotoxicity. These data may help to identify molecular markers for acute hepatotoxicity induced by carcinogens.