• Title/Summary/Keyword: 4 bar Mechanism

Search Result 133, Processing Time 0.026 seconds

Analysis of Dynamic Deformation of 4-Bar Linkage Mechanism (1) Finite Element Analysis and Numerical Solution (4절 링크 기구의 동적 변형 해석 (I) 유한 요소 해석 및 수치해)

  • Cho, Sun-Whi;Park, Jong-Keun;Lee, Jin
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.4
    • /
    • pp.737-752
    • /
    • 1992
  • Analysis of elasto-dynamic deformation of flexible linkage mechanism is conducted using the finite element method. The equations of motion of the system are derived from the static structural problem in which dynamic inertia, gravitational and driving forces are treated as external loads. Linear spring model is included in the formulation of equation of motions to represent the effects of deformation of elastic bearings of revolute joints on the system behavior. A computer program is constructed and applied to analyze a specific crank-lever 4-bar mechanism. The algorithm of the program is as follows. First, the natural frequencies and the mode shapes of the system are calculated by solving the eigenproblem of the mechanism system which can be considered as a static structure by assuming the input shaft (crank shaft) to be fixed at any given configuration of mechanism. And finally, the elasto-dynamic deformation of the whole system is obtained using mode superposition method for the case of constant input speed. The effect of geometric stiffness on the mechamism is included in the program with the axial forces of links obtained through the quasi-static displacement analysis. It is found that the geometric stiffness exerts an important effect upon the elasto-dynamic behavior of the flexible linkage mechanism. Elastic deformation of bearing lowers the natural frequencies of the system, resulting smaller elastic displacement at the mid-point of the links and bigger elestic displacement at the ends of the links than rigid bearing. The above investigation of flexible linkage mechanism shows that the effects of the elastic deformation of bearing on the mechanism should be considered to design the mechanism which satisfies more preciously the purpose and the condition of design.

Development of piston contact mechanism for radial piston pump (레이디얼 피스톤 펌프의 피스톤 접촉 메커니즘 개발)

  • Ham, Y.B.;Cha, J.G.;Kim, D.M.;Kong, T.W.;Yun, S.N.;Ahn, K.Y.;Kweon, B.S.
    • Transactions of The Korea Fluid Power Systems Society
    • /
    • v.7 no.1
    • /
    • pp.1-5
    • /
    • 2010
  • This paper presents the experimental results of the radial piston type oil pump with new mechanism for a metal diaphragm hydrogen compressor. Generally, metal diaphragm type hydrogen compressor systems are operated by oil hydraulic power. In this system an oil compensating pump has been demanded to compensate for a leakage oil head chamber. The metal diaphragm type hydrogen compressor consists of an oil compensating pump, commonly used hydraulic piston pump and driven by main crank shaft. The radial piston type oil compensating pump with new rolling contacted piston mechanism is developed and experimented. The developed piston element of the radial piston pump consists of piston, steel ball, return spring, two check valves, eccentric cam and ball racer. In this study, designed 4 type pistons as and orifice hole. Operating characteristics and pressure ripple characteristics are tested under no load to 60bar loaded with every 20bar increasing step and pressure ripple and flow rate are experimentally investigated.

  • PDF

Design of a novel haptic mouse system

  • Choi, Hee-Jin;Kwon, Dong-Soo;Kim, Mun-Sang
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2002.10a
    • /
    • pp.51.4-51
    • /
    • 2002
  • $\textbullet$ A noval haptic mouse system is developed for human computer interface. $\textbullet$ Five bar mechanism is adapted for 2 dof force feedback with virtual environment. $\textbullet$ Double prismatic joint type mechanism is adapted to reflect 1 dof grabbing force feedback. $\textbullet$ Cable driven mechansim is used for actuation to reduce backlash and endow backdrivability. $\textbullet$ Virtual wall perception experiment is conducted to obtain force specification for haptic mouse. $\textbullet$ Average mouse workspace is measured using magnetic position tracker.

  • PDF

Design of Robot Using of Jansen Mechanism (얀센메커니즘을 이용한 로봇 설계)

  • Kim, beong jin;Kim, hyeon min;Lee, hyo jung
    • Proceeding of EDISON Challenge
    • /
    • 2016.03a
    • /
    • pp.501-505
    • /
    • 2016
  • In this study, a robot is implemented in H/W based on four-bar linkage mechanism and Jansen mechanism. Our goal is to finish the given path using given terms. The various programs was used to understand the mechanism in more detail. DISON m.Sketch, EDISON Designer, Theo Jansen Mechanism Optimization Solver. Using these programs, we can design the robot in more dtails and reduce errors and trials. For the design and implementation of a robot, it is need to get joint variable, a foot point, and their relation. Thus, the proposed kinematic analysis is very important process for the design and implementation of legged robots.

  • PDF

Development of Under-actuated Robotic Hand Mechanism for Self-adaptive Grip and Caging Grasp (형상적응형 파지와 케이징 파지가 가능한 부족구동 기반 로봇 의수 메커니즘 개발)

  • Sin, Minki;Cho, Jang Ho;Woo, Hyun Soo;Kim, Kiyoung
    • The Journal of Korea Robotics Society
    • /
    • v.17 no.4
    • /
    • pp.484-492
    • /
    • 2022
  • This paper presents a simple and robust under-actuated robotic finger mechanism that enables self-adaptive grip, fingertip pinch, and caging grasp functions. In order to perform daily activities using hands, the fingers should be able to perform adaptive gripping and pinching motion, and the caging grasp function is required to realize natural gripping motions and improve grip reliability. However, general commercial prosthetic hands cannot implement all three functions because they use under-actuation mechanism and simple mechanical structure to achieve light-weight and high robustness characteristic. In this paper, new mechanism is proposed that maintains structural simplicity and implements all the three finger functions with simple one degree-of-freedom control through a combination of a four-bar linkage mechanism and a wire-driven mechanism. The basic structure and operating principle of the proposed finger mechanism were explained, and simulation and experiments using the prototype were conducted to verify the gripping performance of the proposed finger mechanism.

Sandy Sediment Transport Mechanism on Tidal Sand Bodies, West Coast of Korea (해양(조수환경) 사립퇴적물의 이동기작에 관한 연구 - 한국 서해 만경강.동진강 하구 해역 -)

  • Yong Ahn Park;Hyo Jin Kang;Y.I. Song
    • The Korean Journal of Quaternary Research
    • /
    • v.5 no.1
    • /
    • pp.33-45
    • /
    • 1991
  • Sand bars associated with strong tidal currents are well developed in the subtidal zone near the Kokunsan islands. Tidal currents measured at sand bar in the area show an asymmetry in magnitude between flood and ebb currents. At the southern flank of the sand bar the currents are flood-dominant whereas the currents are ebb-dominant at the northern flank. The asymmetry is more distinctive as the currents become stronger during spring tide. Moreover, the flood-dominance along the southern flank is stronger than the ebb-dominance along the northern flank. Thus the flood current is more affective to the sand bar. The sandy bottom sediment is mostly transported as bedload by the tidal currents. The magnitude asymmetry of the tidal currents results in a net sediment movement in one direction. The direction is onshore in the south and offshore in the north, which may result in a net counterlookwise rotation of the sands around the sand bar. However, the sand bar may migrate towards onshore due to the more affective flood current in the south. The irregular V-shaped outline of the sand bar in the south also seem to reflect the strong effect of flood current.

  • PDF

A method of approximating spring characteristic and its application to the problem of balancing input torques (스프링특성의 근사법과 입력토오크 평형문제에의 응용)

  • 신재균
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.12 no.5
    • /
    • pp.1026-1034
    • /
    • 1988
  • An efficient method for designing balancing springs to be used for dynamic balancing of planar mechanisms was studied. In spite of its wide application in the field of balancing problems such as balancing of input torques, clearance effects etc., there have been few efficient ways of determining the specifications of the balancing springs. To improve this problem, a method of approximating the characteristic of linear springs was suggested and its validity was checked through an analysis of errors. Further, through an example of a balancing problem to reduce the fluctuation of input torques of a 4bar mechanism, it was shown that the proposed method of approximation simplifies the design equations and a satisfactory result can be found efficiently.

A Study on the Threshing Mechanism of Rasp-Bar Type Thresher -Dynamic Analysis of Threshing Process- (줄봉형 탈곡기의 탈곡장치에 관한 연구 -탈곡과정의 역학적 분석-)

  • Park, K.J.;Clark, S.J.;Dwyer, S.V.
    • Journal of Biosystems Engineering
    • /
    • v.18 no.4
    • /
    • pp.371-381
    • /
    • 1993
  • Threshing operation is performed by impact, compression and friction forces inside the thresher. These values should be appropriate to the crop condition to enhance the threshing and separating efficiency and to decrease the grain damage. To analyze the threshing process inside the rasp-bar type thresher, impact, friction and compression forces were measured using transducers with strain gage circuits. To measure the impact forces and friction forces between the rasp-bar and crop, full bridge strain gage circuit was built on the rasp-bar holder. To measure the compression forces and circumferential friction forces between the concave and crop, two sets of full bridge strain gage circuits were built on the T-type concave transducer. Threshing work of wheat crop with 12% of moisture content was performed at 3 levels of compression ratio and with 3 replications. Each transducer could not measure the exact forces continuously because the transducer oscillates with the forces. However they could measure maximum forces and force distribution according to the time. Average friction coefficients between crop and concave was 0.61 not showing any significant difference according to the compression ratio. Average acceleration of the crop in the cylinder appeared from $70.6m/s^2$ to $140.8m/s^2$ according to the compression ratio. The velocity of the crop at the exit of the cylinder appeared from 10.7m/s to 15.0m/s according to the compression ratio.

  • PDF