• 제목/요약/키워드: 4축 전용로봇

검색결과 2건 처리시간 0.014초

CNC 선반용 4축 전용로봇의 모델링 및 시뮬레이션 (Modeling and Simulation of 4-Axis Dedicated Robot for CNC Lathe)

  • 김한솔;김갑순
    • 한국기계가공학회지
    • /
    • 제20권4호
    • /
    • pp.49-56
    • /
    • 2021
  • This paper describes the modeling and simulation of a four-axis dedicated robot that can attach and detach a workpiece on a computer numerical control (CNC) lathe. The robot was modeled as a Scarab robot for compatibility with CNC lathes. The advantages of such a robot are that an actuator with a small capacity can be used for the robot and the degrees of freedom of the robot can be reduced to four. For the simulation of the four-axis dedicated robot, a regular kinematic equation and an inverse kinematic equation were derived. Simulations were performed with these equations from the position of the loading device to the chuck position of the lathe before machining and from the chuck of the lathe to the position of the loading device after machining. The simulation results showed that the four-axis dedicated robot could be operated accurately, and they provided the joint angle of each motor (θ1, θ2, and θ3).

4축 이적재 로봇의 주요 부품 선정을 위한 동적 해석 (Dynamic Analysis to Select Main Parts of Four-Axis Palletizing Robots)

  • 박일환;전용재;고아라;설상석;홍대선
    • 한국기계가공학회지
    • /
    • 제19권12호
    • /
    • pp.62-69
    • /
    • 2020
  • The demand for industrial robots is proliferating with production automation. Industrial robots are used in various fields, such as logistics, welding, and assembly. Generally, six degrees of freedom are required to move freely in space. However, the palletizing robot used for material management and logistics systems typically has four degrees of freedom. In designing such robots, their main parts, such as motors and reducers, need to be adequately selected while satisfying payload requirements and speed. Hence, this study proposes a practical method for selecting the major parts based on dynamic analysis using ADAMS. First, the acceleration torques for the robot motion were found from the analysis, and then the friction torques were evaluated. This study introduces a constant-speed torque constant instead of friction coefficient. The RMS torque and maximum power of each motor were found considering the above torques. After that, this study recommends the major specifications of all motors and reducers. The proposed method was applied to a palletizing robot to verify the suitability of the pre-selected main parts. The verification result shows that the proposed method can be successfully applied to the early design stage of industrial robots.