• Title/Summary/Keyword: 4차원방사선치료

Search Result 193, Processing Time 0.033 seconds

A Fusion Study on the Selection of Cyberknife Technique according to the Location of the Pulmonary Tumors (폐종양의 위치에 따른 사이버나이프 기법의 선택에 관한 융합적 연구)

  • Kim, Gab-Jung;Kim, Jeong-Ho;Bae, Seok-Hwan;Kim, Nak-Sang;Seo, Sun-Yeol
    • Journal of the Korea Convergence Society
    • /
    • v.10 no.7
    • /
    • pp.101-108
    • /
    • 2019
  • Depending on the location of the lung tumor, the choice of treatment technique should be considered when treating the Cyberknife. The 4DCT images of 18 lung cancer patients were analyzed, and location error values were extracted through application program. The evaluation result was lower than the average position error only in the upper and the inner. These results suggest that the Vertebral tracking technique is effective when it is close to the pulmonary attachment or near the vertebral body, and the Synchrony technique is effective at other positions. In the future, we would like to study cyber knife treatment technique according to the position of the tumor as well as the volume of the lung and the respiratory cycle.

Radiation Dose-escalation Trial for Glioblastomas with 3D-conformal Radiotherapy (3차원 입체조형치료에 의한 아교모세포종의 방사선 선량증가 연구)

  • Cho, Jae-Ho;Lee, Chang-Geol;Kim, Kyoung-Ju;Bak, Jin-Ho;Lee, Se-Byeoung;Cho, Sam-Ju;Shim, Su-Jung;Yoon, Dok-Hyun;Chang, Jong-Hee;Kim, Tae-Gon;Kim, Dong-Suk;Suh, Chang-Ok
    • Radiation Oncology Journal
    • /
    • v.22 no.4
    • /
    • pp.237-246
    • /
    • 2004
  • Purpose: To investigate the effects of radiation dose-escalation on the treatment outcome, complications and the other prognostic variables for glioblastoma patients treated with 3D-conformal radiotherapy (3D-CRT). Materials and Methods: Between Jan 1997 and July 2002, a total of 75 patients with histologically proven diagnosis of glioblastoma were analyzed. The patients who had a Karnofsky Performance Score (KPS) of 60 or higher, and received at least 50 Gy of radiation to the tumor bed were eligible. All the patients were divided into two arms; Arm 1, the high-dose group was enrolled prospectively, and Arm 2, the low-dose group served as a retrospective control. Arm 1 patients received $63\~70$ Gy (Median 66 Gy, fraction size $1.8\~2$ Gy) with 3D-conformal radiotherapy, and Arm 2 received 59.4 Gy or less (Median 59.4 Gy, fraction size 1.8 Gy) with 2D-conventional radiotherapy. The Gross Tumor Volume (GTV) was defined by the surgical margin and the residual gross tumor on a contrast enhanced MRI. Surrounding edema was not included in the Clinical Target Volume (CTV) in Arm 1, so as to reduce the risk of late radiation associated complications; whereas as in Arm 2 it was included. The overall survival and progression free survival times were calculated from the date of surgery using the Kaplan-Meier method. The time to progression was measured with serial neurologic examinations and MRI or CT scans after RT completion. Acute and late toxicities were evaluated using the Radiation Therapy Oncology Group neurotoxicity scores. Results: During the relatively short follow up period of 14 months, the median overall survival and progression free survival times were $15{\pm}1.65$ and $11{\pm}0.95$ months, respectively. The was a significantly longer survival time for the Arm 1 patients compared to those in Arm 2 (p=0.028). For Arm 1 patients, the median survival and progression free survival times were $21{\pm}5.03$ and $12{\pm}1.59$ months, respectively, while for Arm 2 patients they were $14{\pm}0.94$ and $10{\pm}1.63$ months, respectively. Especially in terms of the 2-year survival rate, the high-dose group showed a much better survival time than the low-dose group; $44.7\%$ versus $19.2\%$. Upon univariate analyses, age, performance status, location of tumor, extent of surgery, tumor volume and radiation dose group were significant factors for survival. Multivariate analyses confirmed that the impact of radiation dose on survival was independent of age, performance status, extent of surgery and target volume. During the follow-up period, complications related directly with radiation, such as radionecrosis, has not been identified. Conclusion: Using 3D-conformal radiotherapy, which is able to reduce the radiation dose to normal tissues compared to 2D-conventional treatment, up to 70 Gy of radiation could be delivered to the GTV without significant toxicity. As an approach to intensify local treatment, the radiation dose escalation through 3D-CRT can be expected to increase the overall and progression free survival times for patients with glioblastomas.

Development of a Verification Tool in Radiation Treatment Setup (방사선치료 시 환자자세 확인을 위한 영상 분석 도구의 개발)

  • 조병철;강세권;한승희;박희철;박석원;오도훈;배훈식
    • Progress in Medical Physics
    • /
    • v.14 no.3
    • /
    • pp.196-202
    • /
    • 2003
  • In 3-dimensional conformal radiation therapy (3D-CRT) and intensity-modulated radiation therapy (IMRT), many studies on reducing setup error have been conducted in order to focus the irradiation on the tumors while sparing normal tissues as much as possible. As one of these efforts, we developed an image enhancement and registration tool for simulators and portal images that analyze setup errors in a quantitative manner. For setup verification, we used simulator (films and EC-L films (Kodak, USA) as portal images. In addition, digital-captured images during simulation, and digitally-reconstructed radiographs (DRR) can be used as reference images in the software, which is coded using IDL5.4 (Research Systems Inc., USA). To improve the poor contrast of portal images, histogram-equalization, and adaptive histogram equalization, CLAHE (contrast limited adaptive histogram equalization) was implemented in the software. For image registration between simulator and portal images, contours drawn on the simulator image were transferred into the portal image, and then aligned onto the same anatomical structures on the portal image. In conclusion, applying CLAHE considerably improved the contrast of portal images and also enabled the analysis of setup errors in a quantitative manner.

  • PDF

Dosimetric Characterization of an Ion Chamber Matrix for Intensity Modulated Radiation Therapy Quality Assurance (세기변조방사선치료 선량분포 확인을 위한 2차원적 이온전리함 배열의 특성분석)

  • Lee, Jeong-Woo;Hong, Se-Mie;Kim, Yon-Lae;Choi, Kyoung-Sik;Jung, Jin-Beom;Lee, Doo-Hyun;Suh, Tae-Suk
    • Progress in Medical Physics
    • /
    • v.17 no.3
    • /
    • pp.131-135
    • /
    • 2006
  • A commercial ion chamber matrix was examined the characteristics and its performance for radiotherapy qualify assurance. The device was the I'mRT 2D-MatriXX (Scanditronix-Wellhofer, Schwarzenbruck, Germany). The 2D-MatriXX device consists of a 1020 vented ion chamber array, arranged in $24{\times}24cm^2$ matrix. Each ion chamber has a volume of $0.08cm^3$, spacing of 0.762 cm and minimum sampling time of 20 ms. For the investigation of the characteristics, dose linearity, output factor, short-term reproducibility and dose rate dependency were tested. In the testing of dose linearity. It has shown a good signal linearity within 1% in the range of $1{\sim}800$cGy. Dose rate dependency was found to be lower than 0.4% (Range: 100-600 Mu/min) relative to a dose rate of 300 Mu/min as a reference. Output factors matched very well within 0.5% compared with commissioned beam data using a ionization chamber (CC01, Scanditronix-Wellhofer, Schwarzenbruck, Germany) in the range of field sizes $3{\times}3{\sim}24{\times}24cm^2$. Short-term reproducibility (6 times with a interval of 15 minute) was also shown a good agreement within 0.5%, when the temperature and the pressure were corrected by each time of measurement. in addition, we compared enhanced dynamic wedge (EDW, Varian, Palo Alto, USA) profiles from calculated values in the radiation planning system with those from measurements of the MatriXX. Furthermore, anon-uniform IMRT dose fluence was tested. All the comparison studies have shown good agreements. In this study, the MatriXX was evaluated as a reliable dosimeter, and it could be used as a simplistic and convenient tool for radiotherapy qualify assurance.

  • PDF

Intensity Modulated Radiation Therapy Commissioning and Quality Assurance: Implementation of AAPM TG119 (세기조절방사선치료(IMRT)의 Commissioning 및 정도관리: AAPM TG119 적용)

  • Ahn, Woo-Sang;Cho, Byung-Chul
    • Progress in Medical Physics
    • /
    • v.22 no.2
    • /
    • pp.99-105
    • /
    • 2011
  • The purpose of this study is to evaluate the accuracy of IMRT in our clinic from based on TG119 procedure and establish action level. Five IMRT test cases were described in TG119: multi-target, head&neck, prostate, and two C-shapes (easy&hard). There were used and delivered to water-equivalent solid phantom for IMRT. Absolute dose for points in target and OAR was measured by using an ion chamber (CC13, IBA). EBT2 film was utilized to compare the measured two-dimensional dose distribution with the calculated one by treatment planning system. All collected data were analyzed using the TG119 specifications to determine the confidence limit. The mean of relative error (%) between measured and calculated value was $1.2{\pm}1.1%$ and $1.2{\pm}0.7%$ for target and OAR, respectively. The resulting confidence limits were 3.4% and 2.6%. In EBT2 film dosimetry, the average percentage of points passing the gamma criteria (3%/3 mm) was $97.7{\pm}0.8%$. Confidence limit values determined by EBT2 film analysis was 3.9%. This study has focused on IMRT commissioning and quality assurance based on TG119 guideline. It is concluded that action level were ${\pm}4%$ and ${\pm}3%$ for target and OAR and 97% for film measurement, respectively. It is expected that TG119-based procedure can be used as reference to evaluate the accuracy of IMRT for each institution.

The 3-Dimensional Analysis of the Efficacy of a Belly-Board Device for the Displacement of Small Bowel During Pelvic Irradiation (골반강 방사선치료 중 소장의 이동을 위한 벨리보드의 효과에 대한 3차원적 분석)

  • Lee, Kyung-Ja
    • Radiation Oncology Journal
    • /
    • v.26 no.4
    • /
    • pp.271-279
    • /
    • 2008
  • Purpose: To evaluate the efficacy of a belly-board device (BBD) in reducing the volume of small bowel during four-field pelvic irradiation. Materials and Methods: Twenty-two cancer patients (14 uterine cervical cancer, 6 rectal cancer, and 2 endometrial cancer) scheduled to receive pelvic irradiation were selected for this study. Two sets of CT images were taken with and without the belly-board device using the Siemens 16 channel CT scanner. All patients were set in the prone position. The CT images were transferred to a treatment planning system for dose calculation and volume measurements. The external surfaces of small bowel and the bladder were contoured on all CT scans and the 4-pelvic fields were added. The dose-volume-histogram of the bladder and small bowel, with and without the BBD, were plotted and analyzed. Results: In all patients, the total small bowel volume included in the irradiated fields was reduced when the BBD was used. The mean volume reduction was 35% (range, $1{\sim}79%$) and was statistically significant (p<0.001). The reduction in small bowel volume receiving $10{\sim}100%$ of the prescribed dose was statistically significant when the BBD was used in all cases. Almost no change in the total bladder volume involved was observed in the field (<8 cc, p=0.762). However, the bladder volume receiving 90% of the prescribed dose was 100% in 15/22 patients (68%) and $90{\sim}99%$ in 7/22 patients (32%) with the BBD. In comparison, the bladder volume receiving 90% of the prescribed dose was 100% in 10/22 patients (45%), $90{\sim}99%$ in 7/22 patients (32%), and $80{\sim}89%$ in 5/22 patients (23%) without the BBD. When the BBD was used, an increase in the bladder volume receiving a high dose range was observed Conclusion: This study shows that the use of a BBD for the treatment of cancer in the pelvic area significantly improves small bowel sparing. However, since the BBD pushed the bladder into the treatment field, the bladder volume receiving the high dose could increase. Therefore it is recommended to be considerate in using the BBD when bladder damage is of concern.

Suggestion for Comprehensive Quality Assurance of Medical Linear Accelerator in Korea (국내 선형가속기의 포괄적인 품질관리체계에 대한 제언)

  • Choi, Sang Hyoun;Park, Dong-wook;Kim, Kum Bae;Kim, Dong Wook;Lee, Jaiki;Shin, Dong Oh
    • Progress in Medical Physics
    • /
    • v.26 no.4
    • /
    • pp.294-303
    • /
    • 2015
  • American Association of Physicists in Medicine (AAPM) Published Task Group 40 report which includes recommendations for comprehensive quality assurance (QA) for medical linear accelerator in 1994 and TG-142 report for recommendation for QA which includes procedures such as intensity-modulated radiotherapy (IMRT), stereotactic radiosurgery (SRS) and stereotactic body radiation therapy (SBRT) in 2010. Recently, Nuclear Safety and Security Commission (NSSC) published NSSC notification no. 2015-005 which is "Technological standards for radiation safety of medical field". This notification regulate to establish guidelines for quality assurance which includes organization and job, devices, methods/frequency/tolerances and action levels for QA, and to implement quality assurance in each medical institution. For this reason, all of these facilities using medical machine for patient treatment should establish items, frequencies and tolerances for proper QA for medical treatment machine that use the techniques such as non-IMRT, IMRT and SRS/SBRT, and perform quality assurance. For domestic, however, there are lack of guidelines and reports of Korean Society of Medical Physicists (KSMP) for reference to establish systematic QA report in medical institutes. This report, therefore, suggested comprehensive quality assurance system such as the scheme of quality assurance system, which is considered for domestic conditions, based the notification of NSSC and AAPM TG-142 reports. We think that the quality assurance system suggested for medical linear accelerator also help establishing QA system for another high-precision radiation treatment machines.

A Pilot Study for the Remote Monitoring of IMRT Using a Head and Neck Phantom (원격 품질 보증 시스템을 사용한 세기변조 방사선치료의 예비 모니터링 결과)

  • Han, Young-Yih;Shin, Eun-Hyuk;Lim, Chun-Il;Kang, Se-Kwon;Park, Sung-Ho;Lah, Jeong-Eun;Suh, Tae-Suk;Yoon, Myong-Geun;Lee, Se-Byeong;Ju, Sang-Gyu;Ahn, Yong-Chan
    • Radiation Oncology Journal
    • /
    • v.25 no.4
    • /
    • pp.249-260
    • /
    • 2007
  • Purpose: In order to enhance the quality of IMRT as employed in Korea, we developed a remote monitoring system. The feasibility of the system was evaluated by conducting a pilot study. Materials and Methods: The remote monitoring system consisted of a head and neck phantom and a user manual. The phantom contains a target and three OARs (organs at risk) that can be detected on CT images. TLD capsules were inserted at the center of the target and at the OARs. Two film slits for GafchromicEBT film were located on the axial and saggital planes. The user manual contained an IMRT planning guide and instructions for IMRT planning and the delivery process. After the manual and phantom were sent to four institutions, IMRT was planed and delivered. Predicted doses were compared with measured doses. Dose distribution along the two straight lines that intersected at the center of the axial film was measured and compared with the profiles predicted by the plan. Results: The measurements at the target agreed with the predicted dose within a 3% deviation. Doses at the OARs that represented the thyroid glands showed larger deviations (minimum 3.3% and maximum 19.8%). The deviation at OARs that represented the spiral cord was $0.7{\sim}1.4%$. The percentage of dose distributions that showed more than a 5% of deviation on the lines was $7{\sim}27%$ and $7{\sim}14%$ along the horizontal and vertical lines, respectively. Conculsion: Remote monitoring of IMRT using the developed system was feasible. With remote monitoring, the deviation at the target is expected to be small while the deviation at the OARs can be very large. Therefore, a method that is able to investigate the cause of a large deviation needs to be developed. In addition, a more clinically relevant measure for the two-dimensional dose comparison and pass/fail criteria need to be further developed.

The Impact of Bladder Volume on Acute Urinary Toxicity during Radiation Therapy for Prostate Cancer (전립선암의 방사선치료시 방광 부피가 비뇨기계 부작용에 미치는 영향)

  • Lee, Ji-Hae;Suh, Hyun-Suk;Lee, Kyung-Ja;Lee, Re-Na;Kim, Myung-Soo
    • Radiation Oncology Journal
    • /
    • v.26 no.4
    • /
    • pp.237-246
    • /
    • 2008
  • Purpose: Three-dimensional conformal radiation therapy (3DCRT) and intensity-modulated radiation therapy (IMRT) were found to reduce the incidence of acute and late rectal toxicity compared with conventional radiation therapy (RT), although acute and late urinary toxicities were not reduced significantly. Acute urinary toxicity, even at a low-grade, not only has an impact on a patient's quality of life, but also can be used as a predictor for chronic urinary toxicity. With bladder filling, part of the bladder moves away from the radiation field, resulting in a small irradiated bladder volume; hence, urinary toxicity can be decreased. The purpose of this study is to evaluate the impact of bladder volume on acute urinary toxicity during RT in patients with prostate cancer. Materials and Methods: Forty two patients diagnosed with prostate cancer were treated by 3DCRT and of these, 21 patients made up a control group treated without any instruction to control the bladder volume. The remaining 21 patients in the experimental group were treated with a full bladder after drinking 450 mL of water an hour before treatment. We measured the bladder volume by CT and ultrasound at simulation to validate the accuracy of ultrasound. During the treatment period, we measured bladder volume weekly by ultrasound, for the experimental group, to evaluate the variation of the bladder volume. Results: A significant correlation between the bladder volume measured by CT and ultrasound was observed. The bladder volume in the experimental group varied with each patient despite drinking the same amount of water. Although weekly variations of the bladder volume were very high, larger initial CT volumes were associated with larger mean weekly bladder volumes. The mean bladder volume was $299{\pm}155\;mL$ in the experimental group, as opposed to $187{\pm}155\;mL$ in the control group. Patients in experimental group experienced less acute urinary toxicities than in control group, but the difference was not statistically significant. A trend of reduced toxicity was observed with the increase of CT bladder volume. In patients with bladder volumes greater than 150 mL at simulation, toxicity rates of all grades were significantly lower than in patients with bladder volume less than 150 mL. Also, patients with a mean bladder volume larger than 100 mL during treatment showed a slightly reduced Grade 1 urinary toxicity rate compared to patients with a mean bladder volume smaller than 100 mL. Conclusion: Despite the large variability in bladder volume during the treatment period, treating patients with a full bladder reduced acute urinary toxicities in patients with prostate cancer. We recommend that patients with prostate cancer undergo treatment with a full bladder.

Fabrication and Characterization of Two-dimensional Fiber-optic Radiation Sensor for High Energy Photon Beam Therapy Dosimetry (고 에너지 광자선 계측용 2차원 광섬유 방사선 센서의 제작 및 특성분석)

  • Jang, Kyoung-Won;Cho, Dong-Hyun;Shin, Sang-Hun;Kim, Hyung-Shik;Yi, Jeong-Han;Lee, Bong-Soo;Kim, Sin;Cho, Hyo-Sung
    • Korean Journal of Optics and Photonics
    • /
    • v.18 no.4
    • /
    • pp.241-245
    • /
    • 2007
  • In this study, a two-dimensional fiber-optic radiation sensor has been developed using water-equivalent organic scintillators for photon beam therapy dosimetry. Two-dimensional photon beam distributions and percent depth doses(PDD) are measured according to the energies and field sizes of the photon beam. This sensor has many advantages such as high resolution, real-time measurement and ease of calibration over conventional radiation measurement devices.