• Title/Summary/Keyword: 4기통엔진

Search Result 26, Processing Time 0.018 seconds

Location Issue of Bearing and Unbalance Mass on the Balance Shaft for a Inline 4-Cylinder Engine (직렬 4기통 엔진용 밸런스 샤프트의 베어링 및 불평형 질량 위치 결정 문제)

  • Bae, Chul-Yong;Kim, Chan-Jung;Lee, Dong-Won;Kwon, Seong-Jin;Lee, Bong-Hyun
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.18 no.3
    • /
    • pp.277-283
    • /
    • 2008
  • Balance shaft module contributes to reduce the engine-born vibration by compensating it from a unbalance mass with opposite phase but practically, this device has some problems during the operation in a high speed owing to the considerable amount of unbalance mass that leads to the large quantity of bending deformation as well as torque fluctuation at the balance shaft. To tackle two main problems, the design strategy on balance shaft is suggested by addressing the optimal location of unbalance mass and supporting hearing based on the formulation of objective function that minimizes critical issues, both bending deformation as well as torque fluctuation. The boundary condition of balance shaft assumes to be free such that any external force or contact component is not taken into consideration in this study.

Selection issue on the balance shaft for a inline 4-cylinder engine as how to locate both supporting bearing and unbalance mass (직렬 4기통 엔진용 밸런스 샤프트 불평형 질량과 베어링 위치 선정 방법)

  • Lee, Dong-Won;Kim, Chan-Jung;Bae, Chul-Yong;Lee, Bong-Hyun
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.04a
    • /
    • pp.801-806
    • /
    • 2008
  • Large quantity of bending deformation as well as rotating torque fluctuation at the balance shaft are main struggles during the operation in a high speed rotation and thereby, two issues should be cleared at the design process of balance shaft module. Since two issues are highly related with balance shaft itself and particularly much sensitive to the location of both supporting bearing and unbalance mass, the design strategy on balance shaft should be investigated at the aspect of controlling two critical issues at the early stage of balance shaft design. To tackle two main problems, the formulation of objective function that minimizes critical issues, both bending deformation as well as torque fluctuation, is suggested to derive the optimal information on balance shaft. Then, optimal informations are reviewed at the practical logics and the guideline at the selection of locations, both supporting bearing and unbalance mass, is addressed at the final chapter.

  • PDF

Numerical Analysis for Temperature Distribution and Thermal Stresses in a Turbocharged Large CNG Engine Piston (터보과급 대형 CNG기관 피스톤의 온도분포와 열응력 해석)

  • Kim, Yang-Sul;An, Su-Chul
    • Journal of the Korean Institute of Gas
    • /
    • v.12 no.4
    • /
    • pp.58-62
    • /
    • 2008
  • The purpose of this paper is to establish a standard finite element analysis model of a piston by carrying out three dimensional modeling of a series six-cylindered CNG engine's piston to forecast temperature distribution at stationary state and the following thermal stress and variation, and cross checking it with existing analysis. Also, in order to evaluate the affects of the cooling system to the piston's heat load, the paper analyzed piston's temperature and thermal stress distribution according to the cooling water temperature changes and the following variations. As a result, the maximum temperature was found at the center of the crown in the piston and the maximum thermal stress occurred from the lower part of the piston.

  • PDF

Three Dimensional Unsteady Flow Characteristics inside the Catalytic Converter of 6 Cylinder Gasoline Engine (6기통 가솔린 엔진에 장착된 촉매변환기 내의 3차원 비정상 유동특성 해석)

  • 정수진;김우승
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.6 no.4
    • /
    • pp.108-120
    • /
    • 1998
  • A theoretical study of three-dimensional unsteady compressible non-reacting flow inside double flow of monolith catalytic converter system attached to 6-cylinder engine was performed for the achievement of performance improvement, reduction of light-off time, and longer service life by improving the flow distribution of pulsating exhaust gases. The differences between unsteady and steady-state flow were evaluated through the numerical computations. To obtains the boundary conditions to a numerical analysis, one dimensional non-steady gas dynamic calculation was also performed by using the method of characteristics in intake and exhaust system. Studies indicate that unsteady representation is necessary because pulsation of gas velocity may affect gas flow uniformity within the monolith. The simulation results also show that the level of flow maldistribution in the monolith heavily depends on curvature and angles of separation streamline of mixing pipe that homogenizes the exhaust gas from individual cylinders. It is also found that on dual flow converter systems, there is severe interactions of each pulsating exhaust gas flow and the length of mixing pipe and junction geometry influence greatly on the degree of flow distribution.

  • PDF

Research on the Injection Condition Calibration Process of a Common-rail DME Fueled Engine (4기통 커먼레일 DME 엔진의 분사조건 보정방법에 대한 연구)

  • Chung, Jae-Woo;Kang, Jung-Ho;Kim, Nam-Ho;Jeong, Soo-Jin;Lee, Ho-Gil;Kang, Woo
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.16 no.5
    • /
    • pp.147-156
    • /
    • 2008
  • As the management of fuel efficiency becomes globally reinforced in attempts to find an environment-friendly vehicle that will operate against global warming, the interest in and the demand for the type of vehicle with a high-efficiency diesel engine using light oil. However, it also emits a greater amount of PM (particulate matter) and NOx than emissions from vehicles using other types of fuels. Therefore, the DME (Dimethyl Ether), an oxygen containing fuel draws attention as an alternative fuel for light oil that can be used for diesel engines since it generates very little smoke. But to develop and compare performance of an electric controlled common-rail DME engine, engine tests requires optimized injection conditions at required engine RPM and engine torque. These injection conditions cannot be set freely and the data configuration through the experimentally repeated application requires much time as well as a significant amount of errors and effort. The object of this study is to configure the basic injection map using the results of the DME engine experiments performed so far. For this, in this study, the functionalization of the required equations were performed along with the basic review of the factors that had influence on the data map. Through this, the information on the injection pressure, injection amount, injection duration, injection timing, etc. under certain operation condition could be obtained.

An Experimental Study of Fuel Economy and Emission Characteristics for a Heavy-Duty DME Bus (대형 DME버스의 연비 및 배기가스 특성에 관한 연구)

  • Oh, Yong-Il;Pyo, Young-Duk;Kwon, Ock-Bae;Beak, Young-Sun;Cho, Sang-Hyun;Lim, Ock-Taeck
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.36 no.4
    • /
    • pp.371-376
    • /
    • 2012
  • The experimental test was conducted for a heavy-duty DME bus in JE-05 exhaust gas test mode using a chassis dynamometer, exhaust gas analyzers, and a PM measurement system. The heavy-duty DME bus was not equipped with after-treatment systems such as DOC or DPF. The dynamic behavior, emission characteristics, and fuel economy of the bus were investigated with an 8.0-liter, 6-cylinder conventional diesel engine. The results showed that the dynamic behavior in DME mode was almost the same as in diesel mode. However, there was little difference among the two operation modes for $NO_x$ and CO emissions. THC emissions were lower for DME mode than for diesel mode. Also, the amount of PM emissions was remarkably lower than for the diesel mode because DME contains a greater amount of oxygen than diesel. The data showed that $CO_2$ emissions were almost similar in the two modes but fuel economy (calculated using heating value) was lower for DME mode than for diesel mode.