• 제목/요약/키워드: 3T human MRI

검색결과 73건 처리시간 0.025초

다발성 경화증 질환의 자기공명 T2 강조영상에서 단면 두께 변화에 따른 잡음 평가 (Noise Level Evaluation According to Slice Thickness Change in Magnetic Resonance T2 Weighted Image of Multiple Sclerosis Disease)

  • 홍인기;박민지;강성현;이영진
    • 대한방사선기술학회지:방사선기술과학
    • /
    • 제44권4호
    • /
    • pp.327-333
    • /
    • 2021
  • Magnetic resonance imaging(MRI) uses strong magnetic field to image the cross-section of human body and has excellent image quality with no risk of radiation exposure. Because of above-mentioned advantages, MRI has been widely used in clinical fields. However, the noise generated in MRI degrades the quality of medical images and has a negative effect on quick and accurate diagnosis. In particular, examining a object with a detailed structure such as brain, image quality degradation becomes a problem for diagnosis. Therefore, in this study, we acquired T2 weighted 3D data of multiple sclerosis disease using BrainWeb simulation program, and used quantitative evaluation factors to find appropriate slice thickness among 1, 3, 5, and 7 mm. Coefficient of variation and contrast to noise ratio were calculated to evaluate the noise level, and root mean square error and peak signal to noise ratio were used to evaluate the similarity with the reference image. As a result, the noise level decreased as the slice thickness increased, while the similarity decreased after 5 mm. In conclusion, as the slice thickness increases, the noise is reduced and the image quality is improved. However, since the edge signal is lost due to overlapped signal, it is considered that selecting appropriate slice thickness is necessary.

자기 공명영상 시스템의 수소원자 공명 주파수법을 이용한 생체 내 열 전달 관찰 (In-Vivo Heat Transfer Measurement using Proton Resonance Frequency Method of Magnetic Resonance Imaging)

  • 조지연;조종운;이현용;신운재;은충기;문치웅
    • 전자공학회논문지SC
    • /
    • 제40권3호
    • /
    • pp.172-180
    • /
    • 2003
  • 본 연구에서는 자기공명영상(MRI)에서 수소 원자핵의 공명주파수(PRF) 방법을 기반으로 인체 종아리 근육 외부의 열원에 의해 근육 내부로 열원이 전달되는 과정을 비침습적으로 관찰하는 방법을 제시한다. 열전달과정을 온도 변화로 측정하였는데 온도 영상의 안정성 및 보정 실험은 phantom을 이용하였고 온도의 변화는 phantom과 인체 모두에서 측정하였다. Phantom 실험은 agarose gel을 중탕하여 약 50℃까지 가열시킨 후 1시간의 냉각과정 동안 매 3분마다 데이터를 획득하였다. 인체 실험에서는 지원자의 종아리(the calf)에 hot pack을 이용하여 열을 전달하였다. Hot pack을 발열시키기 전에 기준 데이터를 1번 획득하고, 발열시킨 후부터 매 2분마다 30분 동안 데이터를 획득하였다. 획득된 영상 데이터는 위상차 영상으로 재구성된 다음 각 ROI에서의 평균 위상차를 관측하였다. 온도를 34.2∼50.2℃의 범위에서 변화시켰을 때 phantom의 위상차는 온도 변화에 대해 선형적으로 변하였다. 이 범위에서 측정된 온도의 해상도는 0.0457 radian/℃(0.0038 ppm/℃)였다. 인체 실험에서는 각 영상에서 hot pack과 가까운 위치의 평균 위상차가 hot pack과 먼 위치의 평균 위상차보다 작은 값을 나타냈다 이를 통해 같은 영상 단면에서도 열원(heat source)과의 거리에 따라서 온도 변화가 다르게 나타나는 것을 관찰할 수 있었다. 본 연구를 통해 PRF방법을 이용하여 MRI에서도 비침습적으로 인체 내부의 열전달과정을 관측하였고 이로서 온열치료 시 MRI가 임상적 이용 가능성이 있음을 확인하였다.

Generating Motion- and Distortion-Free Local Field Map Using 3D Ultrashort TE MRI: Comparison with T2* Mapping

  • Jeong, Kyle;Thapa, Bijaya;Han, Bong-Soo;Kim, Daehong;Jeong, Eun-Kee
    • Investigative Magnetic Resonance Imaging
    • /
    • 제23권4호
    • /
    • pp.328-340
    • /
    • 2019
  • Purpose: To generate phase images with free of motion-induced artifact and susceptibility-induced distortion using 3D radial ultrashort TE (UTE) MRI. Materials and Methods: The field map was theoretically derived by solving Laplace's equation with appropriate boundary conditions, and used to simulate the image distortion in conventional spin-warp MRI. Manufacturer's 3D radial imaging sequence was modified to acquire maximum number of radial spokes in a given time, by removing the spoiler gradient and sampling during both rampup and rampdown gradient. Spoke direction randomly jumps so that a readout gradient acts as a spoiling gradient for the previous spoke. The custom raw data was reconstructed using a homemade image reconstruction software, which is programmed using Python language. The method was applied to a phantom and in-vivo human brain and abdomen. The performance of UTE was compared with 3D GRE for phase mapping. Local phase mapping was compared with T2* mapping using UTE. Results: The phase map using UTE mimics true field-map, which was theoretically calculated, while that using 3D GRE revealed both motion-induced artifact and geometric distortion. Motion-free imaging is particularly crucial for application of phase mapping for abdomen MRI, which typically requires multiple breathold acquisitions. The air pockets, which are caught within the digestive pathway, induce spatially varying and large background field. T2* map, that was calculated using UTE data, suffers from non-uniform T2* value due to this background field, while does not appear in the local phase map of UTE data. Conclusion: Phase map generated using UTE mimicked the true field map even when non-zero susceptibility objects were present. Phase map generated by 3D GRE did not accurately mimic the true field map when non-zero susceptibility objects were present due to the significant field distortion as theoretically calculated. Nonetheless, UTE allows for phase maps to be free of susceptibility-induced distortion without the use of any post-processing protocols.

Benefit of Using Early Contrast-Enhanced 2D T2-Weighted Fluid-Attenuated Inversion Recovery Image to Detect Leptomeningeal Metastasis in Lung-Cancer Staging

  • Kim, Han Joon;Lee, Jungbin;Lee, A Leum;Lee, Jae-Wook;Kim, Chan-Kyu;Kim, Jung Youn;Park, Sung-Tae;Chang, Kee-Hyun
    • Investigative Magnetic Resonance Imaging
    • /
    • 제26권1호
    • /
    • pp.32-42
    • /
    • 2022
  • Purpose: To evaluate the clinical benefit of 2D contrast-enhanced T2 fluid-attenuated inversion recovery (CE-T2 FLAIR) image for detecting leptomeningeal metastasis (LM) in the brain metastasis work-up for lung cancer. Materials and Methods: From June 2017 to July 2019, we collected all consecutive patients with lung cancer who underwent brain magnetic resonance image (MRI), including contrast-enhanced 3D fast spin echo T1 black-blood image (CE-T1WI) and CE-T2 FLAIR; we recruited clinico-radiologically suspected LM cases. Two independent readers analyzed the images for LM in three sessions: CE-T1WI, CE-T2 FLAIR, and their combination. Results: We recruited 526 patients with suspected lung cancer who underwent brain MRI; of these, we excluded 77 (insufficient image protocol, unclear pathology, different contrast media, poor image quality). Of the 449 patients, 34 were clinico-radiologically suspected to have LM; among them, 23 were diagnosed with true LM. The calculated detection performance of CE-T1WI, CE-T2 FLAIR, and combined analysis obtained from the 34 suspected LM were highest in the combined analysis (AUC: 0.80, 0.82, and 0.89, respectively). The inter-observer agreement was also the highest in the combined analysis (0.68, 0.72, and 0.86, respectively). In quantitative analyses, CNR of CE-T2 FLAIR was significantly higher than that of CE-T1WI (Wilcoxon signed rank test, P < 0.05). Conclusion: Adding CE-T2 FLAIR might provide better detection for LM in the brain-metastasis screening for lung cancer.

Diagnostic Significance of pH-Responsive Gd3+-Based T1 MR Contrast Agents

  • Bhuniya, Sankarprasad;Hong, Kwan Soo
    • Investigative Magnetic Resonance Imaging
    • /
    • 제23권1호
    • /
    • pp.17-25
    • /
    • 2019
  • We discuss recent advances in Gd-based $T_1$-weighted MR contrast agents for the mapping of cellular pH. The pH plays a critical role in various biological processes. During the past two decades, several MR contrast agents of strategic importance for pH-mapping have been developed. Some of these agents shed light on the pH fluctuation in the tumor microenvironment. A pH-responsive self-assembled contrast agent facilitates the visualization of tumor size as small as $3mm^3$. Optimization of various parameters is crucial for the development of pH-responsive contrast agents. In due course, the new contrast agents may provide significant insight into pH fluctuations in the human body.

70대의 성별에 따른 피질하부 차이 비교 (Comparison of Differences in Subcortical between Men and Women in their Seventies)

  • 안병주;박혜미;김주연;이정환
    • 한국방사선학회논문지
    • /
    • 제14권5호
    • /
    • pp.585-595
    • /
    • 2020
  • 자기 공명 영상(MRI)은 인간의 신경계 장애에서 뇌 구조의 변화를 검사하는 중요한 기술이다. 뇌 발달은 매우 복잡한 과정이며, 신경 생성과 유전자 프로그램의 영향을 받게 된다. 나이가 들어감에 따라 뇌의 다양한 구조 영역이 변화하면서 뇌 질환 형성에 기여하게 되며, 건강한 뇌의 발달에 영향을 미치는 다양한 변수 중 성별은 가장 큰 영향을 주는 요인 중 하나이다. 영상 데이터는 FSL(FMRIB software library)에서 제공하는 SIENAX, FIRST, 정점분석(Vertex Analysis)과 같은 다양한 프로그램을 통해 분석이 수행되었다. 우리의 결과는 특정 연령대의 피질하부영역에서 유의한 성별 관련 차이가 관찰되었음을 보여주고 있다. 성별과 볼륨간의 이러한 변화 정도 차이의 크기는 조사 된 영역에 따라 다르게 나타나고 있다. 이 연구에서 우리는 각 성별간 피질하부영역의 구조 분석을 위해 고해상도 3T MRI를 사용하였다. 또한, 정점 분석은 각 성별간의 피질 구조에서 체적 차이를 시각화하는데 사용되었다. 이 연구는 70대 그룹으로 제한되어 있으며, 향후 더 넓은 연령대를 대상으로 추가 연구가 필요하다.

Time-Multiplexed RF Transmission to Improve $B_1$ Homogeneity in High Field MRI

  • Han, Byung-Hee;Seo, Jeung-Hun;Heo, Hye-Young;Lee, Soo-Yeol
    • 대한의용생체공학회:의공학회지
    • /
    • 제29권2호
    • /
    • pp.99-106
    • /
    • 2008
  • To improve $B_1$ homogeneity in high field MRI, the RF power is applied to the transmit array coil elements sequentially in the time-multiplexed way. Since only a single coil element is activated in a time-multiplexing slot, the global standing wave formation in the human body is greatly suppressed. The time-multiplexing slot width is on the order of micro seconds, hence, high-order-harmonic slices can be placed far from the transmit coil and simultaneous multiple slice selection can be avoided. The $B_1$ homogeneities of a birdcage coil and an eight-channel transmit array coil have been compared through finite difference time domain simulations. The simulation results indicate that the proposed technique can reduce the peak-to-peak $B_1$ inhomogeneity down to one fourth of the transmission with a birdcage coil on the central plane of the human head model at 3 T. The mimicking experiments at 3 T, eight separate experiments with a single coil element activated and image reconstruction by combining the eight images, also show promising results. It is expected that the proposed technique has some advantages over other $B_1$ improving methods in real practice since simple RF switching circuitries are only necessary and electromagnetic coupling between the coil elements is out of concern in its realization.

자기공명영상을 이용한 근육 단면적 측정법의 활용을 위한 영상왜곡보정 (Distortion Correction in Magnetic Resonance Images on the Measurement of Muscle Cross-sectional Area)

  • 홍철표;이동훈;박지원;한봉수
    • The Journal of Korean Physical Therapy
    • /
    • 제24권2호
    • /
    • pp.66-72
    • /
    • 2012
  • Purpose: The purpose of this study is to explore the importance of the image distortion correction in the cross sectional area measurement for the iliopsas muscle, tensor fasciae latae muscle, gluteus maximus muscle and the knee extensor muscles, by using (magnetic resonance imaging) MRI. Methods: This study was performed using an open 0.32T MRI system. To estimate the image distortion, T1 images for an AAPM homogeneity/linearity phantom were acquired, and the region in which the maximum geometric distortion was less than or equal to the pixel size (1.6 mm) of the images, it was defined as the distortion correction-free region. The T2 images for a human subject's pelvis and thigh in normal positions were obtained. Then, after the regions of interest in the pelvis and thigh were moved into the distortion correction-free region, T2 images for the pelvis and thigh were scanned with the same imaging parameters used in the previous T2 imaging. The cross-sectional areas were measured in the two T2 images that were obtained in the normal position, and the distortion correction-free region, as well as the area error caused by geometric image distortion was calculated. Results: The geometrical distortion is gradually increased, from the magnet center to the outer region, in axial and coronal plane. The cross-sectional area error of gluteus maximus muscle and the knee extensors was as high as 9.27% and 3.16% in before and after distortion correction, respectively. Conclusion: The cross-sectional area of the muscles that suffered from the geometrical distortion is necessary to correct for the estimation of the intervention.

Simultaneous Unwrapping Phase and Error Recovery from Inhomogeneity (SUPER) for Quantitative Susceptibility Mapping of the Human Brain

  • Yang, Young-Joong;Yoon, Jong-Hyun;Baek, Hyun-Man;Ahn, Chang-Beom
    • Investigative Magnetic Resonance Imaging
    • /
    • 제22권1호
    • /
    • pp.37-49
    • /
    • 2018
  • Purpose: The effect of global inhomogeneity on quantitative susceptibility mapping (QSM) was investigated. A technique referred to as Simultaneous Unwrapping Phase with Error Recovery from inhomogeneity (SUPER) is suggested as a preprocessing to QSM to remove global field inhomogeneity-induced phase by polynomial fitting. Materials and Methods: The effect of global inhomogeneity on QSM was investigated by numerical simulations. Three types of global inhomogeneity were added to the tissue susceptibility phase, and the root mean square error (RMSE) in the susceptibility map was evaluated. In-vivo QSM imaging with volunteers was carried out for 3.0T and 7.0T MRI systems to demonstrate the efficacy of the proposed method. Results: The SUPER technique removed harmonic and non-harmonic global phases. Previously only the harmonic phase was removed by the background phase removal method. The global phase contained a non-harmonic phase due to various experimental and physiological causes, which degraded a susceptibility map. The RMSE in the susceptibility map increased under the influence of global inhomogeneity; while the error was consistent, irrespective of the global inhomogeneity, if the inhomogeneity was corrected by the SUPER technique. In-vivo QSM imaging with volunteers at 3.0T and 7.0T MRI systems showed better definition in small vascular structures and reduced fluctuation and non-uniformity in the frontal lobes, where field inhomogeneity was more severe. Conclusion: Correcting global inhomogeneity using the SUPER technique is an effective way to obtain an accurate susceptibility map on QSM method. Since the susceptibility variations are small quantities in the brain tissue, correction of the inhomogeneity is an essential element for obtaining an accurate QSM.

Preliminary Phantom Experiments to Map Amino Acids and Neurotransmitters Using MRI

  • Oh, Jang-Hoon;Kim, Hyug-Gi;Woo, Dong-Cheol;Rhee, Sun Jung;Lee, Soo Yeol;Jahng, Geon-Ho
    • 한국의학물리학회지:의학물리
    • /
    • 제29권1호
    • /
    • pp.29-41
    • /
    • 2018
  • The objective of this study was to evaluate the chemical exchange saturation transfer (CEST) effect of amino acids and neurotransmitters, which exist in the human brain, depending on the concentration, pH, and amplitude of the saturation radiofrequency field. Phantoms were developed with asparagine (Asn), ${\gamma}-aminobutyric$ acid (GABA), glutamate (Glu), glycine (Gly), and myoinositol (MI). Each chemical had three different concentrations of 10, 30, and 50 mM and three different pH values of 5.6, 6.2, and 7.4. Full Z-spectrum CEST images for each phantom were acquired with a continuous-wave radiofrequency (RF) saturation pulse with two different $B_1$ amplitudes of $2{\mu}T$ and $4{\mu}T$ using an animal 9.4T MRI system. A voxel-based CEST asymmetry was mapped to evaluate exchangeable protons based on amide (-NH), amine ($-NH_2$), and hydroxyl (-OH) groups for the five target molecules. For all target molecules, the CEST effect was increased with increasing concentration and B1 amplitude; however, the CEST effect with varying pH displayed a different trend depending on the characteristics of the molecule. On CEST asymmetric maps, Glu and MI were well visualized around 3.0 and 0.9 ppm, respectively, and were well separated macroscopically at a pH of 7.4. The exchange rates of Asn, Glu, BABA, and Gly usually decreased with increasing pH. The CEST effect was dependent on the concentration, acidity of the target molecules, and B1 amplitude of the saturation RF pulse. The CEST effect for Asn can be observed in a 9.4T MRI system. The results of this study are based on applying the CEST technique in patients with neurodegenerative diseases when proteins in the brain are increased with disease progression.