• 제목/요약/키워드: 3T MR neurography

검색결과 3건 처리시간 0.017초

요추 신경근 평가를 위한 1.5T MR의 단일 방향 경사자장을 사용한 확산강조 자기공명신경조영 (Diffusion-Weighted MR Neurography with Unidirectional Motion-Probing Gradient to Evaluate Lumbar Nerve Roots at 1.5T MR)

  • 윤나연;하두회;이상민;최혜정
    • 대한영상의학회지
    • /
    • 제85권3호
    • /
    • pp.607-617
    • /
    • 2024
  • 목적 최근 확산강조 자기공명신경조영(diffusion-weighted MR neurography; 이하 DW MRN)이 신경근 평가에 도움이 된다고 보고되었다. 본 연구는 1.5T MR에서 단일방향 경사자장을 사용한 DW MRN의 요추 신경근 평가의 유용성을 확인하고자 한다. 대상과 방법 앞뒤 방향 경사자장의 DW MRN을 포함한 64요추 MR을 후향적으로 분석했다. 제3 요추에서 제1 천추까지 총 512개 요추 신경근의 변화를 T2 강조영상, 조영증강 T1 강조영상, 그리고 DW MRN에서 평가하고 일치도와 상관관계 분석을 했다. 결과 T2 강조영상에서 78개의 신경근 압박이 있었고, 조영증강 T1 강조영상에서 52개 신경근이 조영증강되었다. DW MRN에서 67개 신경근의 부종과 고신호강도가 있었다. 조영증강 T1 강조영상과 DW MRN 모두 신경근의 변화가 나타난 경우는 42개였다. DW MRN과 조영증강 T1 강조영상, T2 강조영상 간에 중간 또는 상당한 일치도와 양의 상관관계를 보였다(κ = 0.59-0.65, ρ = 0.600-0.653). 결론 앞뒤 단일방향을 사용한 DW MRN은 척추 신경근의 변화 평가에 도움이 되며, 가돌리늄 조영증강을 대체 또는 보완하는 역할을 할 수 있을 것이다.

Use of Magnetic Resonance Neurography for Evaluating the Distribution and Patterns of Chronic Inflammatory Demyelinating Polyneuropathy

  • Xiaoyun Su;Xiangquan Kong;Zuneng Lu;Min Zhou;Jing Wang;Xiaoming Liu;Xiangchuang Kong;Huiting Zhang;Chuansheng Zheng
    • Korean Journal of Radiology
    • /
    • 제21권4호
    • /
    • pp.483-493
    • /
    • 2020
  • Objective: To evaluate the distribution and characteristics of peripheral nerve abnormalities in chronic inflammatory demyelinating polyneuropathy (CIDP) using magnetic resonance neurography (MRN) and to examine the diagnostic efficiency. Materials and Methods: Thirty-one CIDP patients and 21 controls underwent MR scans. Three-dimensional sampling perfections with application-optimized contrasts using different flip-angle evolutions and T1-/T2- weighted turbo spin-echo sequences were performed for neurography of the brachial and lumbosacral (LS) plexus and cauda equina, respectively. Clinical data and scores of the inflammatory Rasch-built overall disability scale (I-RODS) in CIDP were obtained. Results: The bilateral extracranial vagus (n = 11), trigeminal (n = 12), and intercostal nerves (n = 10) were hypertrophic. Plexus hypertrophies were observed in the brachial plexus of 19 patients (61.3%) and in the LS plexus of 25 patients (80.6%). Patterns of hypertrophy included uniform hypertrophy (17 [54.8%] brachial plexuses and 21 [67.7%] LS plexuses), and multifocal fusiform hypertrophy (2 [6.5%] brachial plexuses and 4 [12.9%] LS plexuses) was present. Enlarged and/or contrast-enhanced cauda equina was found in 3 (9.7%) and 13 (41.9%) patients, respectively. Diameters of the brachial and LS nerve roots were significantly larger in CIDP than in controls (p < 0.001). The largest AUC was obtained for the L5 nerve. There were no significant differences in the course duration, I-RODS score, or diameter between patients with and without hypertrophy. Conclusion: MRN is useful for the assessment of distribution and characteristics of the peripheral nerves in CIDP. Compared to other regions, LS plexus neurography is more sensitive for CIDP.

Detecting Peripheral Nerves in the Elbow using Three-Dimensional Diffusion-Weighted PSIF Sequences: a Feasibility Pilot Study

  • Na, Domin;Ryu, Jaeil;Hong, Suk-Joo;Hong, Sun Hwa;Yoon, Min A;Ahn, Kyung-Sik;Kang, Chang Ho;Kim, Baek Hyun
    • Investigative Magnetic Resonance Imaging
    • /
    • 제20권2호
    • /
    • pp.81-87
    • /
    • 2016
  • Purpose: To analyze the feasibility of three-dimensional (3D) diffusion-weighted (DW) PSIF (reversed FISP [fast imaging with steady-state free precession]) sequence in order to evaluate peripheral nerves in the elbow. Materials and Methods: Ten normal, asymptomatic volunteers were enrolled (6 men, 4 women, mean age 27.9 years). The following sequences of magnetic resonance images (MRI) of the elbow were obtained using a 3.0-T machine: 3D DW PSIF, 3D T2 SPACE (sampling perfection with application optimized contrasts using different flip angle evolution) with SPAIR (spectral adiabatic inversion recovery) and 2D T2 TSE (turbo spin echo) with modified Dixon (m-Dixon) sequence. Two observers used a 5-point grading system to analyze the image quality of the ulnar, median, and radial nerves. The signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) of each nerve were measured. We compared 3D DW PSIF images with other sequences using the Wilcoxon-signed rank test and Friedman test. Inter-observer agreement was measured using intraclass correlation coefficient (ICC) analysis. Results: The mean 5-point scores of radial, median, and ulnar nerves in 3D DW PSIF (3.9/4.2/4.5, respectively) were higher than those in 3D T2 SPACE SPAIR (1.9/2.8/2.8) and 2D T2 TSE m-Dixon (1.7/2.8/2.9) sequences (P < 0.05). The mean SNR in 3D DW PSIF was lower than 3D T2 SPACE SPAIR, but there was no difference between 3D DW PSIF and 2D T2 TSE m-Dixon in all of the three nerves. The mean CNR in 3D DW PSIF was lower than 3D T2 SPACE SPAIR and 2D T2 TSE m-Dixon in the median and ulnar nerves, but no difference among the three sequences in the radial nerve. Conclusion: The three-dimensional DW PSIF sequence may be feasible to evaluate the peripheral nerves around the elbow in MR imaging. However, further optimization of the image quality (SNR, CNR) is required.