• Title/Summary/Keyword: 3H-1,5-Benzodiazepines

Search Result 5, Processing Time 0.019 seconds

Silica Sulfuric Acid as a Mild and Efficient Reagent for the Synthesis of 1,4-Diazepine and 1,5-Benzodiazepine Derivatives (Silica Sulfuric Acid를 이용한 효율적인 1,4-diazepine and 1,5-benzodiazepine 유도체의 합성)

  • Joshi, Y.C.;Saingar, Shalini;Kavita, Kavita;Joshi, P.;Kumar, Rajesh
    • Journal of the Korean Chemical Society
    • /
    • v.55 no.4
    • /
    • pp.638-643
    • /
    • 2011
  • The synthesis of biologically active 1H-1,4-diazepines 4a-d and 3H-1,5-benzodiazepines 5a-d in good yields, from the heterocyclization reaction of 2-(4-methylthio benzenesulfonyl)-1,3-dimethyl/1-methyl-3-phenyl/1,3-diphenyl/1-methyl-3-ethoxy propane-1,3-dione 3a-d with ethylenediamine (EDA) and o-phenylenediamine (o-PDA), respectively, in the presence of silica sulfuric acid (SSA) is described. The novel ${\beta}$-diketones/${\beta}$-ketoesters 3a-d were synthesized by the condensation reaction of 4-methylthiobenzenesulfonyl chloride 1 with various ${\beta}$-diketones/${\beta}$-ketoesters 2a-d. All structures of the newly synthesized compounds were elucidated by elemental analysis and spectral studies. The compounds 4a-d and 5a-d have been screened for antimicrobial, antifungal and anthelmintic activity.

Heterocyclization Reaction of 4-(2-Methylaziridin-1-yl)-3-ureidobenzotrifluorides under Appel's Conditions

  • Cho, Hyun-In;Lee, Kee-Jung
    • Bulletin of the Korean Chemical Society
    • /
    • v.24 no.2
    • /
    • pp.189-192
    • /
    • 2003
  • The reaction of 4-(2-methylaziridin-1-yl)-3-ureidobenzotrifluorides 4 with triphenylphosphine, carbon tetrachloride, and triethylamine (Appel's condition) led to the corresponding carbodiimides 5, which underwent intramolecular cycloaddition reaction with aziridine under the reaction condition to give the benzimidazolefused heterocycles, 2,3-dihydro-1H-imidazo[1,2-a]benzimidazoles 8 and 12,13-dihydro-5H-benzimidazo[2,3-b] [1,3]benzodiazepines 9.

Pharmacodynamic Interactions of Diazepam and Flumazenil on Cortical Eeg in Rats (흰쥐 대뇌피질의 뇌파에 대한 diazepam 및 flumazenil의 약력학적 상호작용)

  • 이만기
    • Biomolecules & Therapeutics
    • /
    • v.7 no.3
    • /
    • pp.242-248
    • /
    • 1999
  • Diazepam, a benzodiazepine (BDZ) agonist, produces sedation and flumazenil, a BDZ antagonist, blocks these actions. The aim of this study was to examine the effects of BDZs on cortical electroencephalogram (EEG) in rats. The recording electrodes were implanted over the frontal and parietal cortices bilaterally, and the reference and ground electrodes over cerebellum under ketamine anesthesia. To assess the effects of diazepam and flumazenil, rats were injected with diazepam (1 mgHg, i.p.) and/or flumazenil ( 1 mg/kg, i.p.), and the EEG was recorded before and after drugs. Normal awake had theta peak in the spectrum and low amplitude waves, while normal sleep showed large amplitude of slow waves. The powers of delta, theta and alpha bands were increased during sleep compared with during awake. Diazepam reduced the mobility of the rat and induced sleep with intermittent fast spindles and large amplitude of slow activity, and it produced broad peak over betaL band and increased the power of gamma band, which were different from EEG patterns in normal sleep. Saline injection awakened rats and abolished fast spindles for a short period about 2-5 min from EEG pattern during diazepam-induced sleep. Flumazenil blocked both diazepam-induced sleep and decreased the slow activities of delta, theta, alpha and betaL, but not of gamma activity for about 10 min or more. This study may indicate that decrease in power of betaL and betaH bands can be used as the measure of central action of benzodiazepines, and that the EEG parameters of benzodiazepines have to be measured without control over the behavioral state by experimenter.

  • PDF

Acid-Base and Spectroscopic Properties of 1,4-Benzodiazepines in Sodium Dodecyl Sulfate Micellar Solutions

  • Joon Woo Park;Hye Sung Cho
    • Bulletin of the Korean Chemical Society
    • /
    • v.11 no.1
    • /
    • pp.54-58
    • /
    • 1990
  • Acid-base equilibria and spectroscopic properties of diazepam and chlorodiazepoxide were investigated in sodium dodecyl sulfate (SDS) micellar solutions as functions of pH. The results were compared with the behaviors in homogeneous aqueous media. The presence of SDS increased the $pK_a$ of chlorodiazepoxide to 6.3 from 4.7, while it has little effect on the $pK_a$ of diazepam. The acidic protonated form of diazepam was moderately fluorescent when the solution was excited at 350 nm, and emissnion intensity of the species was enhanced about 5 fold by the presence of SDS. On the other hand, the acidic solution of chlorodiazepoxide was non-fluorescent, but the neutral solution of the compound was fluorescent upon excitation at 350 nm. The emission peak of the neutral chlorodiazepoxide shifted to shorter wavelength region without significant change in the emission intensity upon the addition of SDS. Procedures for assay of the individual drugs from their mixture by the use of SDS micelle were discussed.

Involvement of Peripheral Benzodiazepine Receptor on the Contractility of Canine Trachealis Muscle (기관근의 수축성에 대한 말초성 Benzodiazepine 수용체의 역할)

  • Rhyu, Han-Young;Choi, Hyung-Cheol;Choi, Eun-Mee;Sohn, Uy-Dong;Lee, Kwang-Youn;Kim, Won-Joon;Ha, Jeoung-Hee
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.1 no.6
    • /
    • pp.769-774
    • /
    • 1997
  • Non-neuronal high affinity binding sites for benzodiazepines have been found in many peripheral tissues including cardiac muscle and vascular smooth muscle, and have been designated as 'peripheral benzodiazepine receptor'. Benzodiazepines have been shown to induce relaxation of the ileal, vesical, and uterine smooth muscles. However, it is still unclear about possible involvement of peripheral benzodiazepine receptor on the contractility of trachealis muscle. This study was performed to investigate the role of the peripheral benzodiazepine receptor on the contractility of canine trachealis muscle. Canine trachealis muscle strips of 15 mm long were suspended in an isolated organ bath containing 1 ml of physiological salt solution maintained at $37^{\circ}C$, and aerated with $95%\;O_2/5%\;CO_2$. Isometric myography was performed, and the results of the experiments were as follows: Ro5-4684, FGIN-1-27 and clonazepam reduced a basal tone of isolated canine trachealis muscle strip concentration dependently, relaxant actions of RoS-4684 and FGIN-1-27 were antagonized by PK11195, a peripheral benzodiazepine receptor antagonist. Flumazenil, a central type antagonist, did not antagonize the relaxant action of Peripheral type agonists. Saturation binding assay of [3H]Ro5-4864 showed a high affinity$(Kd=5.33{\pm}1.27nM,\;Bmax=\;867.3{\pm}147.2\;fmol/mg\;protein)$ binding site on the canine trachealis muscle. Ro 5-4684 suppressed the bethanechol-, 5-hydroxyoyptamine- and histamine- induced contractions. Platelet activating factor (PAF) exerted strong and prolonged contraction in trachealis muscle strip. Strong tonic contraction by PAE was attenuated by Ro 5-4684, but not by WEB 2086, a PAF antagonist. Based on these results, it is concluded that the peripheral benzodiazepine receptor mediates the inhibitory regulation of contractilty of canine trachealis muscle.

  • PDF