• Title/Summary/Keyword: 3G UMTS Band1

Search Result 5, Processing Time 0.022 seconds

An internal multi-band antenna for mobile handset using two slots (두 개의 슬롯을 이용한 단말기용 다중대역 내장형 안테나)

  • Ahn, Sang-Kwon;Choi, Sunho;Kwak, Kyung-Sup
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.13 no.1
    • /
    • pp.61-66
    • /
    • 2014
  • This paper describes the design, fabrication, and measurement of a compact hexa-band coupling antenna for 4G mobile handset using a small element with two slots. In order to obtain sufficient bandwidth (LTE700, GSM850, GSM900, GSM1800, GSM1900, UMTS) with a Voltage Standing Wave Ratio $(VSWR){\leq}3:1$, two slots are inserted in the small element, and coupling patch is used. The measured result of the fabricated antenna provides 410MHz bandwidth form 0.688 to 1.098GHz and 643 MHz bandwidth form 1.607 to 2.250GHz (${\leq}VSWR 3:1$) with the gain ranging from -0.52 to 4.68 dBi. Also, a good radiation pattern is achieved within the hexa-band (0.698-0.960GHz and 1.710-2.170GHz) range.

Antenna Design of Mobile Frequency bands for Vehicular Application (휴대 단말 주파수 대역에서 동작하는 차량용 안테나 설계)

  • Lee, Seung-Jae;Yoon, Joong-Han;Lee, Jin-Woo
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.6 no.3
    • /
    • pp.337-341
    • /
    • 2011
  • This paper presents the design of a novel integrated mobile antenna for vehicles. The proposed antenna fabricated on a low cost easily available FR4 substrate, which effectively covers both dual band operation. The proposed mobile antenna is a modified G-type patch antenna that can operate in various frequency bands, GSM (880~960 MHz), AMPS (824~894MHz), DCS (1710~1880MHz), PCS (1850~1990MHz), UMTS (1920~2170). Experimental results indicate that the impedance bandwidth (VSWR 1:2.5) of the proposed mobile antenna agree that of the simulation results. It was validated that the configuration can meet the demands of Mobile frequency bands and effectively enhanced the impedance bandwidth to 36.46% for the lower band and 27.84% for the upper band. This paper also presents and discusses the 3D radiation patterns and gains according to the results of the experiment.

Construction and Measurement of a T-DMB/GPS/Mobile Antenna for Vehicular Application (차량에 적용 가능한 T-DMB/GPS/Mobile 안테나의 제작과 측정)

  • Lee, Seung-Jae;Yoon, Joong-Han;Lee, Jin-Woo
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.6 no.5
    • /
    • pp.629-636
    • /
    • 2011
  • This paper presents the design of a novel integrated T-DMB/GPS/Mobile antenna for vehicular application. The T-DMB antenna is designed with a modified meander-type microstrip patch providing linearly a polarized broadside radiation pattern. The GPS antenna is designed with an inserted slot in the patch antenna providing circularly polarized broadside radiation pattern. The Mobile (GSM, AMPS, DCS, PCS, UMTS, etc.) antenna is designed as a modified G-type patch antenna providing multi-band operation. Experimental results indicate that the impedance bandwidth (VSWR 1:2.5) of the proposed T-DMB /GPS/Mobile antenna satisfactorily matches that of the simulation results. The 2D and 3D radiation patterns and gains according to the results of the experiment are also presented and discussed.

Design of Multi-band Antenna Using Metal Frame Coupling for Wearable Device Application (메탈 프레임 커플링을 이용한 웨어러블 디바이스용 다중대역 안테나 설계)

  • Lee, Kyunghak;Han, Minseok
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.10 no.6
    • /
    • pp.522-528
    • /
    • 2017
  • In this paper, we propose a multi-band antenna for wearable devices using metal frame coupling. The proposed antenna has a $45mm{\times}35mm$ antenna using metal frame and a ground dual coupling structure. The proposed multi-band antenna in this paper is optimized for small devices such as wearable devices. By using the metal frame as a part of the antenna, the volume of the antenna is reduced and satisfies under VSWR 3:1 impedance bandwidth of 70 MHz (870 ~ 940 MHz) in low frequency band, 280 MHz (1600 ~ 1880 MHz) and 280 MHz (1900 ~ 2170 MHz) in high frequency band. It also verified the applicability of wearable devices by measuring wireless performance indicators such as TRP/TIS.

Design of the Linked Patch Monopole Antenna and Its SAR Analysis along with Antenna Direction (연결된 패치 형태의 모노폴 안테나 설계 및 안테나 탑재 방향에 따른 SAR 분석)

  • Yang, Joo-Hun;Lee, Seungwoo;Kim, Nam
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.23 no.10
    • /
    • pp.1117-1127
    • /
    • 2012
  • In this paper, the monopole antenna for satisfying GSM900/DCS1800/PCS1900/UMTS2100 services is designed. We can get the characteristic of the low frequency bands by connecting the front patch to the back patch of the antenna and get the low frequency resonance band using a front patch slit. The proposed antenna total volume is $40{\times}98{\times}1.6\;mm^3$, and it is designed on the FR-4 substrate having a relative dielectric constant of 4.4. As measurement result after fabrication, showed that the resonant frequency bandwidths are 156 MHz(828~984 MHz), 708 MHz(1.476~2.184 GHz) based on the return loss of 10 dB, and the radiation patterns show as the omnidirectional shapes for the E-field and H-field. For analyzing the human effects, the proposed antenna is mounted on the mobile-phone case. The averaged peak SAR over 1 g and 10 g is simulated and measured when the input power is 0.25 W. We have checked the variation of the SAR values when the antenna is mounted 4 different directions, then checked the direction having a relatively higher SAR. The results also satisfied the limiting SAR values which are 1.6 W/kg and 2.0 W/kg averaged over 1 g and 10 g tissues respectively.