• Title/Summary/Keyword: 3DMAX

Search Result 64, Processing Time 0.025 seconds

Clinical Application of Wedge Factor (Wedge Factor의 임상적 응용)

  • Choi Dong-Rak;Ahn Yong-Chan;Huh Seung Jae
    • Radiation Oncology Journal
    • /
    • v.13 no.3
    • /
    • pp.291-296
    • /
    • 1995
  • Purpose : In general, the wedge factors which are used clinical practices are ignored of dependency on field sizes and depths. In this present, we investigated systematically the depth and field size dependency to determine the absorbed dose more accurately. Methods : The wedge factors for each wedge filter were measured at various depths (depth of Dmax, 5cm, 10cm, and 15cm) and field sizes ($5cm{\times}5cm,\;10cm{\times}10cm,\;15cm{\times}15cm, and 20cm{\times}20cm$) by using 4-, 6-, and 10-MVX rays. By convention, wedge factors are determined by taking the ratio of the central axis ionization readings when the wedge filter is in place to those of the open field in same field size and measurement depth. In this present work, we determined the wedge factors for 4-, 6-, and 10-MV X rays from Clinac 600C and 2100C linear accelerators (manufactured by Varian Associates, Inc., Palo Alto, CA). To confirm that the wedge was centered, measurements were done with the two possible wedge position and various collimator orientations. Results : The standard deviations of measured values are within $0.3\;\%$ and the depth dependence of wedge factor is greater for the lower energies. Especially, the variation of wedge factor is no less than $5\%$ for 4- and 6- MV X rays with more than $45^{\circ}$ wedge filters. But there seems to be a small dependence on field size. Conclusion : The results of this study show a dependence on the point of measurement. There also seems to be a small dependence on field size. And so, we should consider the depth and field size dependence in determining the wedge factors. If one wedge factor were to be used for each wedge filter it seems that the measurement for a 10cm x 10cm field size at a depth of loom would be a reasonable choice.

  • PDF

Parotid Gland Sparing Radiotherapy Technique Using 3-D Conformal Radiotherapy for Nasopharyngeal CarcinomB (비인강암에서 방사선 구강 건조증 발생 감소를 위한 3차원 입체조형치료)

  • Lim Jihoon;Kim Gwi Eon;Keum Ki Chang;Suh Chang Ok;Lee Sang-wook;Park Hee Chul;Cho Jae Ho;Lee Sang Hoon;Chang Sei Kyung;Loh Juhn Kyu
    • Radiation Oncology Journal
    • /
    • v.18 no.1
    • /
    • pp.1-10
    • /
    • 2000
  • Purpose : Although using the high energy Photon beam with conventional Parallel-opposed beams radiotherapy for nasopharyngeal carcinoma, radiation-induced xerostomia is a troublesome problem for patients. We conducted this study to explore a new parotid gland sparing technique in 3-D conformal radiotherapy (3-D CRT) in an effort to prevent the radiation-induced xerostomia. Materials and Methods : We peformed three different planning for four clinically node-negative nasopharyngeal cancer patients with different location of tumor(intracranial extension, nasal cavity extension, oropharyngeal extension, parapharyngeal extension), and intercompared the plans. Total prescription dose was 70.2 Gy to the isocenter. For plan-A, 2-D parallel opposing fields, a conventional radiotherapy technique, were employed. For plan-B, 2-D parallel opposing fields were used up until 54 Gy and afterwards 3-D non-coplanar beams were used. For plan-C, the new technique, 54 Gy was delivered by 3-D conformal 3-port beams (AP and both lateral ports with wedge compensator; shielding both superficial lobes of parotid glands at the AP beam using BEV) from the beginning of the treatment and early spinal cord block (at 36 Gy) was peformed. And bilateral posterior necks were treated with electron after 36 Gy. After 54 Gy, non-coplanar beams were used for cone-down plan. We intercompared dose statistics (Dmax, Dmin, Dmean, D95, DO5, V95, VOS, Volume receiving 46 Gy) and dose volume histograms (DVH) of tumor and normal tissues and NTCP values of parotid glands for the above three plans. Results : For all patients, the new technique (plan-C) was comparable or superior to the other plans in target volume isodose distribution and dose statistics and it has more homogenous target volume coverage. The new technique was most superior to the other plans in parotid glands sparing (volume receiving 46 Gy: 100, 98, 69$\%$ for each plan-A, B and C). And it showed the lowest NTCP value of parotid glands in all patients (range of NTCP; 96$\~$100$\%$, 79$\~$99$\%$, 51$\~$72$\%$ for each plan-A, B and C). Conclusion : We conclude that the new technique employing 3-D conformal radiotherapy at the beginning of radiotherapy and cone down using non-coplanar beams with early spinal cord block is highly recommended to spare parotid glands for node-negative nasopharygeal cancer patients.

  • PDF

Deep inspiration breath-hold (DIBH) 적용한 림프절이 포함된 왼편 유방암의 방사선 치료계획에 따른 주변 장기 선량 평가

  • Jeong, Da-Lee;Gang, Hyo-Seok;Choe, Byeong-Jun;Park, Sang-Jun;Lee, Geon-Ho;Lee, Du-Sang;An, Min-U;Jeon, Myeong-Su
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.29 no.1
    • /
    • pp.27-35
    • /
    • 2017
  • Purpose: On the left side, breast cancer patients have more side effects than those on the right side because of unnecessary doses in normal organs such as heart and lung. DIBH is performed to reduce this. To evaluate the dose of peripheral organs in the left breast cancer including supraclavicular lymph nodes and internal mammary lymph nodes according to the treatment planning method of Conventional Radiation Therapy, Intensity Modulated Radiation Therapy and Volumetric Modulated Arc Therapy. Materials and Methods: We performed CT-simulation using free breathing and deep inspiration breath-hold technique for 8 patients including left supraclavicular lymph nodes and internal mammary lymph nodes. Based on the acquired CT images, the contour of the body is drawn and the convention is performed so that $95%{\leftarrow}PTV$, $Dmax{\leftarrow}110%$. Conventional Radiation Therapy used a one portal technique on the supraclavicular lymph node and used a field in field technique tangential beam on the breast. Intensity Modulated Radiation Therapy was composed of 7 static fields. Volumetric Modulated Arc Therapy was planned using 2 ARC with a turning radius of $290^{\circ}$ to $179^{\circ}$. The peripheral normal organs dose was analyzed by referring to the dose volume of Eclipse. Results: By applying the deep inspiration breath-hold technique, the mean interval between the heart and chest wall increased $1.6{\pm}0.6cm$. The mean dose of lung was $19.2{\pm}1.0Gy$, which was the smallest value in Intensity Modulated Radiation Therapy. The V30 (%) of the heart was $2.0{\pm}1.9$, which was the smallest value in Intensity Modulated Radiation Therapy. In the left anterior descending coronary artery, the dose was $25.4{\pm}5.4Gy$, which was the smallest in Intensity Modulated Radiation Therapy. The maximum dose value of the Right breast was $29.7{\pm}4.3Gy$ at Intensity Modulated Radiation Therapy. Conclusion: When comparing the values of surrounding normal organs, Intensity Modulated Radiation Therapy and Volumetric Modulated Arc Therapy were applicable values for treatment. Among them, Intensity Modulated Radiation Therapy is considered to be a suitable treatment planning method.

  • PDF

Comparison of Virtual Wedge versus Physical Wedge Affecting on Dose Distribution of Treated Breast and Adjacent Normal Tissue for Tangential Breast Irradiation (유방암의 방사선치료에서 Virtual Wedge와 Physical Wedge사용에 따른 유방선량 및 주변조직선량의 차이)

  • Kim Yeon-Sil;Kim Sung-Whan;Yoon Sel-Chul;Lee Jung-Seok;Son Seok-Hyun;Choi Ihl-Bong
    • Radiation Oncology Journal
    • /
    • v.22 no.3
    • /
    • pp.225-233
    • /
    • 2004
  • Purpose: The Ideal breast irradiation method should provide an optimal dose distribution In the treated breast volume and a minimum scatter dose to the nearby normal tissue. Physical wedges have been used to Improve the dose distribution In the treated breast, but unfortunately Introduce an Increased scatter dose outside the treatment yield, pavllculariy to the contralateral breast. The typical physical wedge (FW) was compared with 4he virtual wedge (VW) to do)ermine the difference In the dose distribution affecting on the treated breast and the contralateral breast, lung, heart and surrounding perlpheral soft tissue. Methods and Materials: The data collected consisted of a measurement taken with solid water, a Humanoid Alderson Rando phantom and patients. The radiation doses at the ipsllateral breast and skin, contralateral breast and skin, surrounding peripheral soft tissue, and Ipsllateral lung and heart were compared using the physical wedge and virtual wedge and the radiation dose distribution and DVH of the treated breast were compared. The beam-on time of each treatment technique was also compared Furthermore, the doses at treated breast skin, contralateral breast skin and skin 1.5 cm away from 4he field margin were also measured using TLD in 7 patients of tangential breast Irradiation and compared the results with phantom measurements. Results: The virtual wedge showed a decreased peripheral dose than those of a typical physical wedge at 15$^{\circ}$, 30$^{\circ}$, 45$^{\circ}$, and 60$^{\circ}$. According to the TLD measurements with 15$^{\circ}$ and 30$^{\circ}$ virtual wedge, the Irradiation dose decreased by 1.35$\%$ and 2.55$\%$ In the contralateral breast and by 0.87$\%$ and 1.9$\%$ In the skin of the contralateral breast respectively. Furthermore, the Irradiation dose decreased by 2.7$\%$ and 6.0$\%$ in the Ipsllateral lung and by 0.96$\%$ and 2.5$\%$ in the heart. The VW fields had lower peripheral doses than those of the PW fields by 1.8$\%$ and 2.33$\%$. However the skin dose Increased by 2.4$\%$ and 4.58$\%$ In the Ipsliateral breast. VW fields, In general, use less monitor units than PW fields and shoriened beam-on time about half of PW. The DVH analysis showed that each delivery technique results In comparable dose distribution in treated breast. Conclusion: A modest dose reduction to the surrounding normal tissue and uniform target homogeneity were observed using the VW technique compare to the PW beam in tangential breast Irradiation The VW field is dosmetrically superlor to the PW beam and can be an efficient method for minimizing acute, late radiation morbidity and reduce 4he linear accelerator loading bV decreasing the radiation delivery time.