• Title/Summary/Keyword: 3DA/V

Search Result 322, Processing Time 0.017 seconds

Genetic Diversity of Korean Native Chicken Populations in DAD-IS Database Using 25 Microsatellite Markers (초위성체 마커를 활용한 가축다양성정보시스템(DAD-IS) 등재 재래닭 집단의 유전적 다양성 분석)

  • Roh, Hee-Jong;Kim, Kwan-Woo;Lee, Jinwook;Jeon, Dayeon;Kim, Seung-Chang;Ko, Yeoung-Gyu;Mun, Seong-Sil;Lee, Hyun-Jung;Lee, Jun-Heon;Oh, Dong-Yep;Byeon, Jae-Hyun;Cho, Chang-Yeon
    • Korean Journal of Poultry Science
    • /
    • v.46 no.2
    • /
    • pp.65-75
    • /
    • 2019
  • A number of Korean native chicken(KNC) populations were registered in FAO (Food and Agriculture Organization) DAD-IS (Domestic Animal Diversity Information Systems, http://www.fao.org/dad-is). But there is a lack of scientific basis to prove that they are unique population of Korea. For this reason, this study was conducted to prove KNC's uniqueness using 25 Microsatellite markers. A total of 548 chickens from 11 KNC populations (KNG, KNB, KNR, KNW, KNY, KNO, HIC, HYD, HBC, JJC, LTC) and 7 introduced populations (ARA: Araucana, RRC and RRD: Rhode Island Red C and D, LGF and LGK: White Leghorn F and K, COS and COH: Cornish brown and Cornish black) were used. Allele size per locus was decided using GeneMapper Software (v 5.0). A total of 195 alleles were observed and the range was 3 to 14 per locus. The MNA, $H_{\exp}$, $H_{obs}$, PIC value within population were the highest in KNY (4.60, 0.627, 0.648, 0.563 respectively) and the lowest in HYD (1.84, 0.297, 0.286, 0.236 respectively). The results of genetic uniformity analysis suggested 15 cluster (${\Delta}K=66.22$). Excluding JJC, the others were grouped in certain cluster with high genetic uniformity. JJC was not grouped in certain cluster but grouped in cluster 2 (44.3%), cluster 3 (17.7%) and cluster8 (19.1%). As a results of this study, we can secure a scientific basis about KNC's uniqueness and these results can be use to basic data for the genetic evaluation and management of KNC breeds.

Development of a Test Method for the Evaluation of DNA Damage in Mouse Spermatogonial Stem Cells

  • Jeon, Hye Lyun;Yi, Jung-Sun;Kim, Tae Sung;Oh, Youkyung;Lee, Hye Jeong;Lee, Minseong;Bang, Jin Seok;Ko, Kinarm;Ahn, Il Young;Ko, Kyungyuk;Kim, Joohwan;Park, Hye-Kyung;Lee, Jong Kwon;Sohn, Soo Jung
    • Toxicological Research
    • /
    • v.33 no.2
    • /
    • pp.107-118
    • /
    • 2017
  • Although alternative test methods based on the 3Rs (Replacement, Reduction, Refinement) are being developed to replace animal testing in reproductive and developmental toxicology, they are still in an early stage. Consequently, we aimed to develop alternative test methods in male animals using mouse spermatogonial stem cells (mSSCs). Here, we modified the OECD TG 489 and optimized the in vitro comet assay in our previous study. This study aimed to verify the validity of in vitro tests involving mSSCs by comparing their results with those of in vivo tests using C57BL/6 mice by gavage. We selected hydroxyurea (HU), which is known to chemically induce male reproductive toxicity. The 50% inhibitory concentration ($IC_{50}$) value of HU was 0.9 mM, as determined by the MTT assay. In the in vitro comet assay, % tail DNA and Olive tail moment (OTM) after HU administration increased significantly, compared to the control. Annexin V, PI staining and TUNEL assays showed that HU caused apoptosis in mSSCs. In order to compare in vitro tests with in vivo tests, the same substances were administered to male C57BL/6 mice. Reproductive toxicity was observed at 25, 50, 100, and 200 mg/kg/day as measured by clinical measures of reduction in sperm motility and testicular weight. The comet assay, DCFH-DA assay, H&E staining, and TUNEL assay were also performed. The results of the test with C57BL/6 mice were similar to those with mSSCs for HU treatment. Finally, linear regression analysis showed a strong positive correlation between results of in vitro tests and those of in vivo. In conclusion, the present study is the first to demonstrate the effect of HU-induced DNA damage, ROS formation, and apoptosis in mSSCs. Further, the results of the current study suggest that mSSCs could be a useful model to predict male reproductive toxicity.