• 제목/요약/키워드: 3D-frame

검색결과 1,028건 처리시간 0.033초

Molecular Cloning and Determination of the Nucleotide Sequence of Raw Starch Digesting α-Amylase from Aspergillus awamori KT-11

  • Matsubara, Takayoshi;Ammar, Youssef Ben;Anindyawati, Trisanti;Yamamoto, Satoru;Ito, Kazuo;Iizuka, Masaru;Minamiura, Noshi
    • BMB Reports
    • /
    • 제37권4호
    • /
    • pp.429-438
    • /
    • 2004
  • Complementary DNAs encoding $\alpha$-amylases (Amyl I, Amyl III) and glucoamylase (GA I) were cloned from Aspergillus awamori KT-11 and their nucleotide sequences were determined. The sequence of Amyl III that was a raw starch digesting $\alpha$-amylase was found to consist of a 1,902 bp open reading frame encoding 634 amino acids. The signal peptide of the enzyme was composed of 21 amino acids. On the other hand, the sequence of Amyl I, which cannot act on raw starch, consisted of a 1,500 bp ORF encoding 499 amino acids. The signal peptide of the enzyme was composed of 21 amino acids. The sequence of GA I consisted of a 1,920 bp ORF that encoded 639 amino acids. The signal peptide was composed of 24 amino acids. The amino acid sequence of Amyl III from the N-terminus to the amino acid number 499 showed 63.3% homology with Amyl I. However, the amino acid sequence from the amino acid number 501 to C-terminus, including the raw-starch-affinity site and the TS region rich in threonine and serine, showed 66.9% homology with GA I.

스마트 기기용 강화유리&사파이어 유리 전용 가공기의 진동해석을 통한 설계 개선에 관한 연구 (A Study on Design Improvement by Vibration Analysis of Hardened Glass & Sapphire Machining Equipment for Smart IT Parts Industry)

  • 조준현;박상현;안범상;이종찬
    • 한국기계가공학회지
    • /
    • 제15권2호
    • /
    • pp.51-56
    • /
    • 2016
  • High brittleness is a characteristic of glass, and in many cases it is broken during the process of machining due to processing problems, such as scratches, chipping, and notches. Machining defects occur due to the vibration of the equipment. Therefore, design techniques are needed that can control the vibration generated in the equipment to increase the strength of tempered glass. The natural frequency of the machine tool via vibration analysis (computer simulation) must be accurately understood to improve the design to ensure the stability of the machine. To accurately understand the natural frequency, 3D modeling, which is the same as actual apparatus, was used and a constraint condition was also applied that was the same as that of the actual apparatus. The maximum speeds of ultrasonic and high frequency, which are 15,000 rpm and 60,000 rpm, respectively, are considerably faster than those of typical machine tools. Therefore, an improved design is needed so that the natural frequency is formed at a lower region and the natural frequency does not increase through general design reinforcement. By restructuring the top frame of the glass processing, the natural frequency was not formed in the operating speed area with the improved design. The lower-order natural frequency is dominant for the effects that the natural frequency has on the vibration. Therefore, the design improvement in which the lower-order natural frequency is not formed in the operating speed area is an optimum design improvement. It is possible to effectively control the vibrations by avoiding resonance with simple design improvements.

Experimental and analytical investigation on seismic behavior of RC framed structure by pushover method

  • Sharma, Akanshu;Reddy, G.R.;Eligehausen, R.;Vaze, K.K.
    • Structural Engineering and Mechanics
    • /
    • 제39권1호
    • /
    • pp.125-145
    • /
    • 2011
  • Pushover analysis has gained significant popularity as an analytical tool for realistic determination of the inelastic behaviour of RC structures. Though significant work has been done to evaluate the demands realistically, the evaluation of capacity and realistic failure modes has taken a back seat. In order to throw light on the inelastic behaviour and capacity evaluation for the RC framed structures, a 3D Reinforced concrete frame structure was tested under monotonically increasing lateral pushover loads, in a parabolic pattern, till failure. The structure consisted of three storeys and had 2 bays along the two orthogonal directions. The structure was gradually pushed in small increments of load and the corresponding displacements were monitored continuously, leading to a pushover curve for the structure as a result of the test along with other relevant information such as strains on reinforcement bars at critical locations, failure modes etc. The major failure modes were observed as flexural failure of beams and columns, torsional failure of transverse beams and joint shear failure. The analysis of the structure was by considering all these failure modes. In order to have a comparison, the analysis was performed as three different cases. In one case, only the flexural hinges were modelled for critical locations in beams and columns; in second the torsional hinges for transverse beams were included in the analysis and in the third case, joint shear hinges were also included in the analysis. It is shown that modelling and capturing all the failure modes is practically possible and such an analysis can provide the realistic insight into the behaviour of the structure.

무선광대역 시스템을 위한 블록 부호화 상관기 기반의 효율적인 수신기 설계 기법 (Efficient Receiver Design Based On Block-Coded Correlator Scheme for UWB-IR)

  • 민승욱
    • 한국산학기술학회논문지
    • /
    • 제16권11호
    • /
    • pp.7582-7588
    • /
    • 2015
  • 광대역 통신을 위한 대표적인 비동기 전송방식인 TR 방식은 동기식 레이크 수신기에 비하여 하드웨어 복잡도가 낮아서 주목을 받아왔다. 최근에는 TR 방식보다 효과적인 데이터 전송을 할 수 있는 BCM 방식이 효율적인 비동기 방식으로 인정받고 있다. BCM 방식의 수신기로는 CMSA 방식이 널리 사용되고 우수한 성능을 가진 것으로 알려져 있다. 본 논문에서는 프레임간 혹은 심볼간 간섭이 존재하는 환경에서, BCM으로 송신된 신호에 대하여 CMSA 방식보다 성능이 우수한 수신기를 제안한다. 제안하는 방식은 TR 방식에서와 같이 상관기를 이용한다. TR방식에서는 하나의 기준신호에 근거한 상관기를 사용하는 반면, 제안하는 방식은 BCM으로 전송된 신호를 복조하기 위하여 블록 코드를 이용한 블록 코드 상관기를 사용한다. 모의실험을 통하여, 제안하는 방식은 CMSA 방식보다 비트오율 측면에서 더 우수한 성능을 나타낸다. 특히, 채널모델 CM4 에서 BER = $10^{-3}$ 일 때, SNR 측면에서 5 dB 이득을 얻을 수 있었다.

Improvement of Land Cover / Land Use Classification by Combination of Optical and Microwave Remote Sensing Data

  • Duong, Nguyen Dinh
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2003년도 Proceedings of ACRS 2003 ISRS
    • /
    • pp.426-428
    • /
    • 2003
  • Optical and microwave remote sensing data have been widely used in land cover and land use classification. Thanks to the spectral absorption characteristics of ground object in visible and near infrared region, optical data enables to extract different land cover types according to their material composition like water body, vegetation cover or bare land. On the other hand, microwave sensor receives backscatter radiance which contains information on surface roughness, object density and their 3-D structure that are very important complementary information to interpret land use and land cover. Separate use of these data have brought many successful results in practice. However, the accuracy of the land use / land cover established by this methodology still has some problems. One of the way to improve accuracy of the land use / land cover classification is just combination of both optical and microwave data in analysis. In this paper for the research, the author used LANDSAT TM scene 127/45 acquired on October 21, 1992, JERS-1 SAR scene 119/265 acquired on October 27, 1992 and aerial photographs taken on October 21, 1992. The study area has been selected in Hanoi City and surrounding area, Vietnam. This is a flat agricultural area with various land use types as water rice, secondary crops like maize, cassava, vegetables cultivation as cucumber, tomato etc. mixed with human settlement and some manufacture facilities as brick and ceramic factories. The use of only optical or microwave data could result in misclassification among some land use features as settlement and vegetables cultivation using frame stages. By combination of multitemporal JERS-1 SAR and TM data these errors have been eliminated so that accuracy of the final land use / land cover map has been improved. The paper describes a methodology for data combination and presents results achieved by the proposed approach.

  • PDF

Seismic behavior of full-scale square concrete filled steel tubular columns under high and varied axial compressions

  • Phan, Hao D.;Lin, Ker-Chun
    • Earthquakes and Structures
    • /
    • 제18권6호
    • /
    • pp.677-689
    • /
    • 2020
  • A building structural system of moment resisting frame (MRF) with concrete filled steel tubular (CFST) columns and wide flange H beams, is one of the most conveniently constructed structural systems. However, there were few studies on evaluating seismic performance of full-scale CFST columns under high axial compression. In addition, some existing famous design codes propose various limits of width-to-thickness ratio (B/t) for steel tubes of the ductile CFST composite members. This study was intended to investigate the seismic behavior of CFST columns under high axial load compression. Four full-scale square CFST column specimens with a B/t of 42 were carried out that were subjected to horizontal cyclic-reversal loads combined with constantly light, medium and high axial loads and with a linearly varied axial load, respectively. Test results revealed that shear strength and deformation capacity of the columns significantly decreased when the axial compression exceeded 0.35 times the nominal compression strength of a CFST column, P0. It was obvious that the higher the axial compression, the lower both the shear strength and deformation capacities were, and the earlier and faster the shear strength degradation occurred. It was found as well that higher axial compressions resulted in larger initial lateral stiffness and faster degradation of post-yield lateral stiffness. Meanwhile, the lower axial compressions led to better energy dissipation capacities with larger cumulative energy. Moreover, the study implied that under axial compressions greater than 0.35P0, the CFST column specimens with B/t limits recommended by AISC 360 (2016), ACI 318 (2014), AIJ (2008) and EC4 (2004) codes do not provide ultimate interstory drift ratio of more than 3% radian, and only the limit in ACI 318 (2014) code satisfies this requirement when axial compression does not exceed 0.35P0.

Characterization and behaviors of single walled carbon nanotube by equivalent-continuum mechanics approach

  • Eltaher, Mohamed A.;Almalki, Talaal A.;Ahmed, Khaled I.E.;Almitani, Khalid H.
    • Advances in nano research
    • /
    • 제7권1호
    • /
    • pp.39-49
    • /
    • 2019
  • This paper focuses on two main objectives. The first one is to exploit an energy equivalent model and finite element method to evaluate the equivalent Young's modulus of single walled carbon nanotubes (SWCNTs) at any orientation angle by using tensile test. The calculated Young's modulus is validated with published experimental results. The second target is to exploit the finite element simulation to investigate mechanical buckling and natural frequencies of SWCNTs. Energy equivalent model is presented to describe the atomic bonding interactions and their chemical energy with mechanical structural energies. A Program of Nanotube modeler is used to generate a geometry of SWCNTs structure by defining its chirality angle, overall length of nanotube and bond length between two adjacent nodes. SWCNTs are simulated as a frame like structure; the bonds between each two neighboring atoms are treated as isotropic beam members with a uniform circular cross section. Carbon bonds is simulated as a beam and the atoms as nodes. A finite element model using 3D beam elements is built under the environment of ANSYS MAPDL environment to simulate a tensile test and characterize equivalent Young's modulus of whole CNT structure. Numerical results are presented to show critical buckling loads, axial and transverse natural frequencies of SWCNTs with different orientation angles and lengths. The understanding of mechanical behaviors of CNTs are essential in developing such structures due to their great potential in wide range of engineering applications.

The Evaluation of Axial Stress in Continuous Welded Rails via Three-Dimensional Bridge-Track Interaction

  • Manovachirasan, Anaphat;Suthasupradit, Songsak;Choi, Jun-Hyeok;Kim, Bum-Joon;Kim, Ki-Du
    • 국제강구조저널
    • /
    • 제18권5호
    • /
    • pp.1617-1630
    • /
    • 2018
  • The crucial differences between conventional rail with split-type connectors and continuous welded rails are axial stress in the longitudinal direction and stability, as well as other issues generated under the influence of loading effects. Longitudinal stresses generated in continuously welded rails on railway bridges are strongly influenced by the nonlinear behavior of the supporting system comprising sleepers and ballasts. Thus, the track structure interaction cannot be neglected. The rail-support system mentioned above has properties of non-uniform material distribution and uncertainty of construction quality. The linear elastic hypothesis therefore cannot correctly evaluate the stress distribution within the rails. The aim of this study is to apply the nonlinear finite element method using the nonlinear coupling interface between the track and structural model and to illustrate the welded rail behavior under the loading effect and uncertain factors of the ballast. Numerical results of nonlinear finite analysis with a three-dimensional solid and frame element model are presented for a typical track-bridge system. A composite plate girder, modeled by solid and shell elements, is also analyzed to consider the behavior of the welded rail. The analysis result showed buckling under the independent calculations of load cases, including 'temperature change', 'bending of the supporting structure', and 'braking' of the railway vehicle. A parametric study of the load combination method and the loading sequence is also included in this analysis.

크로마키를 이용한 증강현실 영상출력 연구 (A Study on the Augmented Reality Display for Educating Power Tiller Operator using Chroma-key)

  • 김유용;노재승;홍순중
    • 농업생명과학연구
    • /
    • 제51권1호
    • /
    • pp.205-212
    • /
    • 2017
  • 경운기 시뮬레이터 운전자가 가상환경에서 교육에 몰입할 수 있도록 현실세계에 가상 물체를 겹쳐 보여주는 증강 현실 기술을 구현하였다. 3D 카메라 입력 장치로부터 초당 30 frame 이상 속도로 경운기 모의 운전 장치의 영상을 획득한다. 획득된 현실 영상을 크로마키 처리하여 가상 현실과 결합하였다. RGB 영상의 HSI 변환 실험결과 색상 최대값 0.52, 최소값 0.153, 채도 최대값 0.57, 최소값 0.16, 명도 최대값 1, 최소값 0.12이 크로마키 처리를 위해 최적값이었다. 본 연구에서는 키패드를 이용하여 크로마키 처리된 현실 영상의 위치를 전 후 상 하 좌 우를 버튼으로 조정하여 초기 결합위치를 조정할 수 있고 최종 조정된 값은 저장하여 유지 관리되도록 하였다. 이를 토대로 초당 30프레임 이상의 속도로 가상현실과 크로마키 처리 영상을 결합한 증강현실 구현이 가능함을 보였다.

C-arm CT의 필수 성능평가 기준 마련을 위한 연구 (A Study on Establishment of Essential Performance Evaluation Criteria for C-arm Computed Tomography)

  • 김은혜;박혜민;김정민
    • 대한방사선기술학회지:방사선기술과학
    • /
    • 제45권2호
    • /
    • pp.127-134
    • /
    • 2022
  • In order to overcome the image quality limitations of the conventional C-arm, a flat panel detector (FPD) is used to enhance spatial resolution, detective quantum efficiency, frame rate, and dynamic range. Three-dimensional (3D) visualized information can be obtained from C-arm computed tomography (CT) equipped with an FPD, which can reduce patient discomfort and provide various medical information to health care providers by conducting procedures in the interventional procedure room without moving the patient to the CT scan room. Unlike a conventional C-arm device, a C-arm CT requires different basic safety and essential performance evaluation criteria; therefore, in this study, basic safety and essential performance evaluation criteria to protect patients, medical staff, and radiologists were derived based on International Electrotechnical Commission (IEC) standards, the Ministry of Food and Drug Safety (MFDS) standards in Korea, and the rules on the installation and operation of special medical equipment in Korea. As a result of the study, six basic safety evaluation criteria related to electrical and mechanical radiation safety (leakage current, collision protection, emergency stopping device, overheating, recovery management, and ingress of water or particulate matter into medical electrical (ME) equipment and ME systems: footswitches) and 14 essential performance evaluation criteria (accuracy of tube voltage, accuracy of tube current, accuracy of loading time, accuracy of current time product, reproducibility of radiation output, linearity and consistency in radiography, half layer value in X-ray equipment, focal size and collimator, relationship between X-ray field and image reception area, consistency of light irradiation versus X-ray irradiation, performance of the mechanical device, focal spot to skin distance accuracy, image quality evaluation, and technical characteristic of cone-beam computed tomography) were selected for a total of 20 criteria.