• 제목/요약/키워드: 3D-RANS

검색결과 88건 처리시간 0.019초

반응면기법을 이용한 PBMR 기체냉각형 고온가스로 상층부의 최적설계 (DESIGN OPTIMIZATION OF UPPER PLENUM OF PBMR USING RESPONSE SURFACE APPROXIMATION)

  • 이상문;김광용
    • 한국전산유체공학회지
    • /
    • 제15권3호
    • /
    • pp.16-23
    • /
    • 2010
  • Shape optimization of an upper plenum of a PBMR type gas cooled nuclear reactor has been performed by using three-dimensional Reynolds-Averaged Navier-Stokes (RANS) analysis and surrogate modeling technique. The objective function is defined as a linear combination of uniformity of flow distribution in the core and pressure drop in the upper plenum and the core. The ratio of thickness of slot to diameter of rising channels, ratio of height of upper plenum to diameter of rising channels, and ratio of height of the slot at inlet to outlet, are used as design variables for optimization. Design points are selected through Latin-hypercube sampling. The optimal point is determined through surrogate-based optimization method which uses 3-D RANS analyses at design points. The results show that the optimum shape represent remarkably improved performance in flow uniformity and friction loss than the reference shape.

Three-Dimensional Numerical Simulation of Intrusive Density Currents

  • An, Sangdo
    • 한국환경과학회지
    • /
    • 제23권7호
    • /
    • pp.1223-1232
    • /
    • 2014
  • Density currents have been easily observed in environmental flows, for instance turbidity currents and pollutant plumes in the oceans and rivers. In this study, we explored the propagation dynamics of density currents using the FLOW-3D computational fluid dynamics code. The renormalization group (RNG) $k-{\varepsilon}$ scheme, a turbulence numerical technique, is employed in a Reynold-averaged Navier-Stokes framework (RANS). The numerical simulations focused on two different types of intrusive density flows: (1) propagating into a two-layer ambient fluid; (2) propagating into a linearly stratified fluid. In the study of intrusive density flows into a two-layer ambient fluid, intrusive speeds were compared with laboratory experiments and analytical solutions. The numerical model shows good quantitative agreement for predicting propagation speed of the density currents. We also numerically reproduced the effect of the ratio of current depth to the overall depth of fluid. The numerical model provided excellent agreement with the analytical values. It was also clearly demonstrated that RNG $k-{\varepsilon}$ scheme within RANS framework is able to accurately simulate the dynamics of density currents. Simulations intruding into a continuously stratified fluid with the various buoyancy frequencies are carried out. These simulations demonstrate that three different propagation patterns can be developed according to the value of $h_n/H$ : (1) underflows developed with $h_n/H=0$ ; (2) overflows developed when $h_n/H=1$ ; (3) intrusive interflow occurred with the condition of 0 < $h_n/H$ < 1.

원뿔형 벤츄리수로의 수리특성 (Hydraulic Characteristics in the Movable Venturi Flume with Circular Cone)

  • 김대근
    • 상하수도학회지
    • /
    • 제27권2호
    • /
    • pp.177-184
    • /
    • 2013
  • This study analyzed the hydraulic characteristics of a venturi flume with a circular cone using a 3-D numerical model which uses RANS(Reynolds-Averaged Navier-Stokes Equation) as the governing equation. The venturi flume with the circular cone efficiently measures the discharge in the low-flow to high-flow range and offers the advantage of accurate discharge measurements in the case of a low flow. With no influence of the tail-water depth, the stage-discharge relationship and the flow behaviors were analyzed to verify the numerical simulation results. Additionally, this study reviewed the effect of the tail-water depth on the flow. The stage-discharge relationship resulting from a numerical simulation in the absence of an effect by the tail-water depth showed a maximum margin of error of 4 % in comparison to the result of a hydraulic experiment. The simulation results reproduced the overall flow behaviors observed in the hydraulic experiment well. The flow starts to become influenced by the tail-water depth when the ratio of the tail-water depth to the total head exceeds approximately 0.7. As the ratio increases, the effect on the flow tends to grow dramatically. As shown in this study, a numerical simulation is effective for identifying the stage-discharge relationship of a venturi flume with various types of venturi bodies, including a venturi flume with a circular cone.

RANS 방정식을 이용한 HAWT 로터 블레이드의 회전 유동장 해석 (ROTATING FLOW ANALYSIS AROUND A HAWT ROTOR BLADE USING RANS EQUATIONS)

  • 김태승;이철;손창호;조창열
    • 한국전산유체공학회지
    • /
    • 제13권2호
    • /
    • pp.55-61
    • /
    • 2008
  • The Reynolds-Averaged Navier-Stokes(RANS) analysis of the 3-D steady flow around the NREL Phase VI horizontal axis wind turbine(HAWT) rotor was performed. The CFD analysis results were compared with experimental data at several different wind speeds. The present CFD model shows good agreements with the experiments both at low wind speed which formed well-attache flow mostly on the upper surface of the blade, and at high wind speed which blade surface flow completely separated. However, some discrepancy occurs at the relatively high wind speeds where mixed attached and separated flow formed on the suction surface of the blade. It seems that the discrepancy is related to the onset of stall phenomena and consequently separation prediction capability of the current turbulence model. It is also found that strong span-wise flow occurs in stalled area due to the centrifugal force generated by rotation of the turbine rotor and it prevents abrupt reduction of normal force for higher wind speed than the designed value.

전치 가이드베인을 가지는 수중 덕트 프로펠러 주위의 전산 유동 해석 (Numerical Flow Analysis of Ducted Marine Propeller with Pre-Swirl Guidevane)

  • 유혜란;정영래;박원규
    • 한국전산유체공학회지
    • /
    • 제9권2호
    • /
    • pp.62-69
    • /
    • 2004
  • The present work solved 3D incompressible RANS equations on a rotating, multi-blocked grid system to efficiently analyze ducted marine propulsor with the interaction of propeller guidevane and annular duct. To handle the interface boundary between the guidevane and the propeller, a sliding multiblock technique based on the cubic spline interpolation was applied. To validate the present code, a turbine flow was simulated and the time-averaged pressure coefficients were compared with experiment. After the code validation, the flowfield around a ducted marine propeller with pre-swirl guidevane was simulated.

2차원 해면효과의 수치계산 (Numerical Simulation of 2-D Wing-In-Ground Effect)

  • ;신명수
    • 한국전산유체공학회지
    • /
    • 제3권1호
    • /
    • pp.54-62
    • /
    • 1998
  • 본 논문은 2차원 해면효과의 수치계산 결과를 정리하였다. 지면으로부터의 높이변화에 따른 점성유동장을 계산하기 위하여 지배방정식으로는 비압축성 RANS 방정식을, 시간에 대하여서는 음해법으로 프로그램을 구성하였다. 압력항은 가상압축성과 4차 수치확산항을 추가하는 것에 의해 계산하였으며, 높은 레이놀즈 수에서의 효과적인 계산을 위해 Baldwin- Lomax 난류모델을 도입하였다. 해면효과가 없는 무한유중에서의 NACA-0012 단면 계산결과를 실험 데이터와 비교하는 것에 의해 프로그램의 타당성을 확인하였다. NACA-6409와 두께 비 4.6%의 날개에 대하여 해면효과를 고려한 계산을 수행하였다. 계산결과, 높이의 변화에 따라 계산된 무차원계수, 압력 및 속도분포는 해면효과의 특성을 잘 보여주고 있다.

  • PDF

반응면기법을 이용한 PBMR 기체냉각형 고온가스로 상층부의 최적설계 (DESIGN OPTIMIZATION OF UPPER PLENUM OF PBMR USING RESPONSE SURFACE APPROXIMATION)

  • 이상문;김광용
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2010년 춘계학술대회논문집
    • /
    • pp.187-194
    • /
    • 2010
  • Shape optimization of an upper plenum of PBMR type gas cooled nuclear reactor has been performed by using three-dimensional Reynolds-Averaged Navier-Stokes (RANS) analysis and surrogate modeling technique. The objective function is defined as a linear combination of uniformity of flow distribution in the core and pressure drop in the upper plenum and the core. The ratio of thickness of slot to diameter of rising channels, ratio of height of upper plenum to diameter of rising channels, and ratio of eight of the slot at inlet to outlet, are used as design variables for optimization. Design points are selected through Latin-hypercube sampling. The optimal point is determined through surrogate-based optimization method which uses 3-D RANS analyses at design points. The results show that the optimum shape represent remarkably improved performance in flow uniformity and friction loss than the reference shape.

  • PDF

수직항력식 터빈을 이용한 풍력발전 시스템의 형상 변화 및 피치각 변화에 관한 유동해석 (Numerical Analysis of Wind Turbine of Drag Force Type with change of Blade Number and Pitch Angle)

  • 박찬;박금성;박원규;윤순현
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2004년도 추계 학술대회논문집
    • /
    • pp.61-64
    • /
    • 2004
  • To analyze the performance of Wind turbine of the drag force type, 3-D RANS equations were solved by the iterative time marching method on sliding multiblock grid system. The numerical flow simulations by changing blade number and pitch angle were carried out : blade number = 15, 20 circumferentially; pitch angle = $30^{\circ},\; 50^{\circ}$ radially. The torque coefficient was also calculated.

  • PDF

공탄성 변형효과를 고려한 10MW급 풍력발전기 블레이드의 성능해석 (Performance Prediction a 10MW-Class Wind Turbine Blade Considering Aeroelastic Deformation Effect)

  • 김동현;김요한;류경중;김동환;김수현
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2011년도 춘계학술대회 논문집
    • /
    • pp.657-662
    • /
    • 2011
  • In this study, aeroelastic performance analyses have been conducted for a 10MW class wind turbine blade model Advanced computational analysis system based on computational fluid dynamics (CFD) and computational structural dynamics (CSD) has been developed in order to investigate detailed dynamic responsed of wind turbine blade Reynolds-averaged Navier-Stokes (RANS) equations with k-${\omega}$ SST turbulence model are solved for unsteady flow problems of the rotating turbine blade model. A fully implicit time marching scheme based on the Newmark direct integration method is used for computing the coupled aeroelastic governing equations of the 3D turbine blade for fluid-structure interaction (FSI) problems.

  • PDF

Propulsive Performance Analysis of Ducted Marine Propulsors with Rotor-Stator Interaction

  • Jang, Jin-Ho;Yu, Hye-Ran;Jung, Young-Rae;Park, Warn-Gyu
    • Journal of Ship and Ocean Technology
    • /
    • 제8권1호
    • /
    • pp.31-41
    • /
    • 2004
  • A ducted marine propulsor has been widely used for the thruster of underwater vehicles for protecting collision damage, increasing propulsive efficiency, and reducing cavitation. Since a single-stage ducted propulsor contains a set of rotor and stator inside an annular duct, the numerical analysis becomes extremely complex and computationally expensive. However, the accurate prediction of viscous flow past a ducted marine propulsor is essential for determining hydrodynamic forces and the propulsive performances. To analyze a ducted propulsor having rotor-stator Interaction, the present work has solved 3D incompressible RANS equations on the sliding multiblocked grid. The flow of a single stage turbine flow was simulated for code validation and time averaged pressure coefficients were compared with experiments. Good agreement was obtained. The hydrodynamic performance coefficients were also computed.