• Title/Summary/Keyword: 3D textiles

Search Result 603, Processing Time 0.026 seconds

A Study on the Fit Preferences of Knitted Jackets According to Body types Using a 3D Virtual Try-On System -Focus on Adult Women in Their 30's and 40's- (3차원 가상 착장 시스템을 이용한 체형별 니트 재킷의 맞음새 연구 -30~40대 성인 여성을 중심으로-)

  • Do, Wol-Hee;Park, Hyun-Jeong
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.34 no.10
    • /
    • pp.1632-1646
    • /
    • 2010
  • This article is an analysis of the fit preference of the knitted jacket according to body types for 30's and 40's adult women through a comparison of real and virtual fit. A five point likert scale was used to evaluate the degree of the preference of real and virtual fit. The data were analyzed with t-test and ANOVA using statistical program SPSS 17.0. The results are as follow. 1. The real and virtual fit preference of the knitted jacket according to body types indicates that respondents preferred pattern 2 for body type N than the rest of the patterns; however, respondents preferred pattern 3 for body type A and H. 2. There were no significant differences between real and virtual fit preference. 3. It is necessary that the knitted jacket follow a similar size tolerance like a woven jacket. The results show that the next generation of virtual try-on systems need the development of a minus clothing ease scale.

A Study on Walking Movements for Skirt Patterns with 3D Motion Analysis System (3차원 동작분석장치를 이름한 하지동작 연구)

  • Kim, Jung-Sook
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.25 no.9
    • /
    • pp.1603-1613
    • /
    • 2001
  • 본 연구는 동작분석장치를 이용하여 하지동작분석을 시도함으로서 실제 동작 시 적응 할 수 있는 의복설계를 위한 기초 자료로서 하지부 실루엣 변화의 특성을 밝히고자 하였다. 대퇴돌기점을 기준으로 본 하지동작의 진행방향 이동과 상향 방향이동을 살펴보았는데 보행유형에 따라 여유량이 특히 요구되는 부위가 각기 다르며, 부위별 필요 여유 량도 각기 다르다는 것을 알 수 있었으며 , 이러한 보행유형 별 스커트 실루엣의 특징은 기능복 설계 시 고려되어야 하겠다. 평지보행 시는 발목부위가 전면방향보다 후면방향으로 이동의 범위가 크므로 트임이나 주름이 뒷면에 있는 것이 적합하고, 계단승강이나 버스승강의 경우 무릎전면에 여유량이 필요하므로 주름이나 트임을 앞쪽에 주는 것이 바람직하며 그 길이는 대퇴돌기점 높이정도에서 시작하여야 하고 무릎아래에 있는 앞트임은 하지동작에 도움이 되지 않음을 알 수 있었다.

  • PDF

A Study of the Oxygen Plasma Treatment on the Serviceability of a Wool Fabric

  • Kan, C.W.;Chan, K.;Yuen, C.W.M.
    • Fibers and Polymers
    • /
    • v.5 no.3
    • /
    • pp.213-218
    • /
    • 2004
  • Low temperature plasma (LTP) treatment using oxygen gas was applied to a wool fabric. The LTP treated wool fabric was tested with several methods: ASTM D5035-1995, ASTM D1424-1996, AATCC Test Method 99-2000, AATCC Test Method 61-2001 lA, AATCC Test Method 15-2002 and AATCC Test Method 8-2001 and the results were compared with the industrial requirements (ASTM D3780-02 and ASTM D4155-0l). The results revealed that the LTP treated wool fabric could fulfil the industrial requirements. The results of the investigation were discussed thoroughly in this paper.

3D Modeling of Safety Leg Guards Considering Skin Deformation and shape (피부길이변화를 고려한 3차원 다리보호대 모델링)

  • Lee, Hyojeong;Eom, Ran-i;Lee, Yejin
    • Korean Journal of Human Ecology
    • /
    • v.24 no.4
    • /
    • pp.555-569
    • /
    • 2015
  • During a design process of a protective equipment for sports activities, minimizing movement restrictions is important for enhancing its functions particularly for protection. This study presents a three-dimensional(3D) modeling methodology for designing baseball catcher's leg guards that will allow maximum possible performance, while providing necessary protection. 3D scanning is performed on three positions frequently used by a catcher during the course of a game by putting markings on the subject's legs at 3cm intervals : a standing, a half squat with knees bent to 90 degrees and 120 degrees of knee flexion. Using data obtained from the 3D scan, we analyzed the changes in skin length, radii of curvatures, and cross-sectional shapes, depending on the degree of knee flexion. The results of the analysis were used to decide an on the ideal segmentation of the leg guards by modeling posture. Knee flexions to 90 degrees and to $120^{\circ}$ induced lengthwise extensions than a standing. In particular, the vertical length from the center of the leg increases to a substantially higher degree when compared to those increased from the inner and the outer side of the leg. The degree of extension is varied by positions. Therefore, the leg guards are segmented at points where the rate of increase changed. It resulted in a three-part segmentation of the leg guards at the thigh, the knee, and the shin. Since the 120 degree knee-flexion posture can accommodate other positions as well, the related 3D data are used for modeling Leg Guard (A) with the loft method. At the same time, Leg Guard (B) was modeled with two-part segmentation without separating the knee and the shin as in existing products. A biomechanical analysis of the new design is performed by simulating a 3D dynamic analysis. The analysis revealed that the three-part type (A) leg guards required less energy from the human body than the two-part type (B).

Color Prediction of Yarn-dyed Woven Fabrics -Model Evaluation-

  • Chae, Youngjoo;Xin, John;Hua, Tao
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.38 no.3
    • /
    • pp.347-354
    • /
    • 2014
  • The color appearance of a yarn-dyed woven fabric depends on the color of the yarn as well as on the weave structure. Predicting the final color appearance or formulating the recipe is a difficult task, considering the interference of colored yarns and structure variations. In a modern fabric design process, the intended color appearance is attained through a digital color methodology based on numerous color data and color mixing recipes (i.e., color prediction models, accumulated in CAD systems). For successful color reproduction, accurate color prediction models should be devised and equipped for the systems. In this study, the final colors of yarn-dyed woven fabrics were predicted using six geometric-color mixing models (i.e., simple K/S model, log K/S model, D-G model, S-N model, modified S-N model, and W-O model). The color differences between the measured and the predicted colors were calculated to evaluate the accuracy of various color models used for different weave structures. The log K/S model, D-G model, and W-O model were found to be more accurate in color prediction of the woven fabrics used. Among these three models, the W-O model was found to be the best one as it gave the least color difference between the measured and the predicted colors.

Fit and Pressure Analysis of Cycling Short Sleeve Tops Using a 3D Virtual Garment System

  • Park, Hyunjeong;Do, Wolhee
    • Fashion & Textile Research Journal
    • /
    • v.23 no.2
    • /
    • pp.237-246
    • /
    • 2021
  • This study aims to analyze short sleeve cycling tops from three brands for a change in garment fit and pressure depending on the static and cycling postures. To this end, it used a 3D virtual garment system to virtualize the garments. Further, a cross-section of the 3D virtual garment data was obtained, and the space length was measured in the design-X program to prove the objectivity of the 3D virtual garment. The results indicated that three brands had a large space length at the front than the back because of the bent posture in cycling. Therefore, appropriate ease was required for the waist and abdomen. Although there were various cutting lines of the bodice panel by brand, the design of the cutting lines should consider the changes in the surface to reflect the bent posture in cycling. The results of this experiment confirmed that the wrinkles present in the 3D virtual garment were reflected in the cross-section and that the space length was small in the high-stress area, as shown in red. Therefore, it was proven the stress of the 3D virtual garment could be used for 3D virtual garment evaluation.

A Novel Method for 3D Surface and Solid Construction Analysis of Fabric Microstructure (직물 미세구조의 3차원 표면 및 솔리드 형성 방법)

  • Lee, Ye-Jin;Lee, Byung-Cheol
    • Korean Journal of Human Ecology
    • /
    • v.21 no.3
    • /
    • pp.539-550
    • /
    • 2012
  • In-depth knowledge of fabric microstructure is essential for understanding clothing comfort since it plays a significant role in heat and mass transfer between the human body and clothing. In this study, a novel method was employed for investigating 3D surfaces and solid construction characteristics of specific fabrics by using a reverse engineering technique. The surface construction data were obtained by a confocal laser scanning microscope and then manipulated by a 3D analysis program. Triangle mesh was used for connecting each 3D point, with clouds and fabric surface characteristics created by rendering techniques. For generating a 3D solid model, determinants of radius of curvature was used. According to the proposed method, actual surface expression of the real fabric was achieved successfully. The results from this methodology can be applied to the detailed analysis of clothing comfort that is highly influenced by the microstructure of the fabric.

Analysis of the Extension and Contraction of Warp-knitted Fabrics Based on Experimental Conditions (실험 조건에 따른 경편성물의 신장률과 축소율 분석)

  • Lee, OkKyung;Hong, Kyunghi;Lee, Gyeongmi;Lee, Yejin
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.45 no.3
    • /
    • pp.453-463
    • /
    • 2021
  • The lengthwise and widthwise deformation of warp-knitted fabrics with different sizes and loading modes were evaluated. Moreover, five tricot samples cut in three directions were compared under four test conditions (A-D). In tests A and B, 500 and 250 g loads were applied on a layer of 20 × 20 and 5 × 10 cm2 samples, respectively. In test C, a 20 × 20 cm2 sample was folded in half over a rod, and 500 g load was applied to each half. In test D, a 20 × 20 cm2 sample was sewn in a loop and subjected to a 500 g load. The lengthwise extension and widthwise contraction analysis results indicate that test B affords the largest values. However, analysis results of the warp-knitted fabric normalized through conversion to a 1 g load and 1 cm sample width indicate that the largest values are afforded for test D. Therefore, pattern reduction may vary depending on the measurement method and properties of the knitted fabric used for the compression wear production, causing variations in the finished product. Thus, an appropriate measurement method must be adopted based on the compression wear design and knitted fabric to be used.

Body Shape Variations Measurements with 3D Scanner for Wearing Foundation (3D Scanner를 이용한 foundation 착용시의 인체 변화 계측)

  • Park, Ji-Eun;Kim, Hee-Eun
    • Fashion & Textile Research Journal
    • /
    • v.9 no.6
    • /
    • pp.651-657
    • /
    • 2007
  • This study was carried out to analyse body configuration and to observe any space between skin and foundation. A special 3D scanner was used to analyze this foundation. Experimental foundations were brassiere, girdle, and all-in-one. Four subjects volunteered, each subject was scanned while wearing foundation and not wearing foundation. Body shape variations were analyzed with an Auto CAD and ScanWax program which analyzes cross section of the skin surface to look for any changes. Height was increased all parts of body, circumference was increased in breast and bust while wearing the foundation. The hip thickness was not increased with wearing the foundation. Therefore this foundation makes people have a different appearance due to unexpected body shape variations. The effects of this foundation should be classified by observing height, circumference, and thickness changes in the body.