• 제목/요약/키워드: 3D superimposition

검색결과 37건 처리시간 0.021초

3차원 영상을 이용한 상악 소구치 발치공간 폐쇄 후 상악 구치부 회전양상의 평가 (The evaluation of rotational movements of maxillary posterior teeth using three dimensional images in cases of extraction of maxillary first premolar)

  • 정득룡;장연주;전윤식;정상혁;이성근
    • 대한치과교정학회지
    • /
    • 제35권6호
    • /
    • pp.451-458
    • /
    • 2005
  • 측모두부방사선사진의 중첩만으로는 교합평면상의 치아이동을 알 수 없으며, occlusogram 역시 촬영 및 중첩의 오류를 피할 수 없다. 본 연구는 석고모형의 3차원 영상을 촬영한 후 3차원 영상 소프트웨어를 이용하여 중첩된 영상을 통해 상악 소구치 발치공간 폐쇄 후 상악 구치부의 회전양상을 알아보고자 하였다. 성인여성 19명을 연구대상으로 하여 치료 전 석고모형 및 치료 완료 후 석고모형의 3차원 영상을 촬영한 후, 상악 경구개면을 기준으로 두 영상을 중첩한 다음, 치료 전후의 상악 구치부의 회전양상을 비교 분석하였다. 연구결과 구치부의 회전 양상은 매우 다양하였다. 그 주요 원인은 치료 전 상악 구치의 다양한 회전 상태와 치열궁 및 치아의 형태학적인 특성 때문인 것으로 추측되었다. 따라서 발치공간 폐쇄 시 일어나는 구치의 회전 양상을 3차원 영상을 이용하여 정확히 평가하기 위해서는 치료 전후에 일어나는 구치의 회전을 초기 배열 전후의 구치 회전, 발치공간 폐쇄 전후의 구치 회전, 그리고 마무리 단계 전후의 구치 회전으로 세분하여 평가해야 함을 알 수 있었다.

Three-dimensional evaluation of the transfer accuracy of a bracket jig fabricated using computer-aided design and manufacturing to the anterior dentition: An in vitro study

  • Park, Jae-Hyun;Choi, Jin-Young;Kim, Seong-Hun;Kim, Su-Jung;Lee, Kee-Joon;Nelson, Gerald
    • 대한치과교정학회지
    • /
    • 제51권6호
    • /
    • pp.375-386
    • /
    • 2021
  • Objective: To evaluate the accuracy of a one-piece bracket jig system fabricated using computer-aided design and manufacturing (CAD/CAM) by employing three-dimensional (3D) digital superimposition. Methods: This in vitro study included 226 anterior teeth selected from 20 patients undergoing orthodontic treatment. Bracket position errors from each of the 40 arches were analyzed quantitatively via 3D digital superimposition (best-fit algorithm) of the virtual bracket and actual bracket after indirect bonding, after accounting for possible variables that may affect accuracy, such as crowding and presence of the resin base. Results: The device could transfer the bracket accurately to the desired position of the patient's dentition within a clinically acceptable range of ± 0.05 mm and 2.0° for linear and angular measurements, respectively. The average linear measurements ranged from 0.029 to 0.101 mm. Among the angular measurements, rotation values showed the least deviation and ranged from 0.396° to 0.623°. Directional bias was pronounced in the vertical direction, and many brackets were bonded toward the occlusal surface. However, no statistical difference was found for the three angular measurement values (torque, angulation, and rotation) in any of the groups classified according to crowding. When the teeth were moderately crowded, the mesio-distal, bucco-lingual, and rotation measurement values were affected by the presence of the resin base. Conclusions: The characteristics of the CAD/CAM one-piece jig system were demonstrated according to the influencing factors, and the transfer accuracy was verified to be within a clinically acceptable level for the indirect bracket bonding of anterior teeth.

Comparison of intraoral scanning and conventional impression techniques using 3-dimensional superimposition

  • Rhee, Ye-Kyu;Huh, Yoon-Hyuk;Cho, Lee-Ra;Park, Chan-Jin
    • The Journal of Advanced Prosthodontics
    • /
    • 제7권6호
    • /
    • pp.460-467
    • /
    • 2015
  • PURPOSE. The aim of this study is to evaluate the appropriate impression technique by analyzing the superimposition of 3D digital model for evaluating accuracy of conventional impression technique and digital impression. MATERIALS AND METHODS. Twenty-four patients who had no periodontitis or temporomandibular joint disease were selected for analysis. As a reference model, digital impressions with a digital impression system were performed. As a test models, for conventional impression dual-arch and full-arch, impression techniques utilizing addition type polyvinylsiloxane for fabrication of cast were applied. 3D laser scanner is used for scanning the cast. Each 3 pairs for 25 STL datasets were imported into the inspection software. The three-dimensional differences were illustrated in a color-coded map. For three-dimensional quantitative analysis, 4 specified contact locations(buccal and lingual cusps of second premolar and molar) were established. For two-dimensional quantitative analysis, the sectioning from buccal cusp to lingual cusp of second premolar and molar were acquired depending on the tooth axis. RESULTS. In color-coded map, the biggest difference between intraoral scanning and dual-arch impression was seen (P<.05). In three-dimensional analysis, the biggest difference was seen between intraoral scanning and dual-arch impression and the smallest difference was seen between dual-arch and full-arch impression. CONCLUSION. The two- and three-dimensional deviations between intraoral scanner and dual-arch impression was bigger than full-arch and dual-arch impression (P<.05). The second premolar showed significantly bigger three-dimensional deviations than the second molar in the three-dimensional deviations (P>.05).

D4AR - A 4-DIMENSIONAL AUGMENTED REALITY - MODEL FOR AUTOMATION AND VISUALIZATION OF CONSTRUCTION PROGRESS MONITORING

  • Mani Golparvar-Fard;Feniosky Pena-Mora
    • 국제학술발표논문집
    • /
    • The 3th International Conference on Construction Engineering and Project Management
    • /
    • pp.30-31
    • /
    • 2009
  • Early detection of schedule delay in field construction activities is vital to project management. It provides the opportunity to initiate remedial actions and increases the chance of controlling such overruns or minimizing their impacts. This entails project managers to design, implement, and maintain a systematic approach for progress monitoring to promptly identify, process and communicate discrepancies between actual and as-planned performances as early as possible. Despite importance, systematic implementation of progress monitoring is challenging: (1) Current progress monitoring is time-consuming as it needs extensive as-planned and as-built data collection; (2) The excessive amount of work required to be performed may cause human-errors and reduce the quality of manually collected data and since only an approximate visual inspection is usually performed, makes the collected data subjective; (3) Existing methods of progress monitoring are also non-systematic and may also create a time-lag between the time progress is reported and the time progress is actually accomplished; (4) Progress reports are visually complex, and do not reflect spatial aspects of construction; and (5) Current reporting methods increase the time required to describe and explain progress in coordination meetings and in turn could delay the decision making process. In summary, with current methods, it may be not be easy to understand the progress situation clearly and quickly. To overcome such inefficiencies, this research focuses on exploring application of unsorted daily progress photograph logs - available on any construction site - as well as IFC-based 4D models for progress monitoring. Our approach is based on computing, from the images themselves, the photographer's locations and orientations, along with a sparse 3D geometric representation of the as-built scene using daily progress photographs and superimposition of the reconstructed scene over the as-planned 4D model. Within such an environment, progress photographs are registered in the virtual as-planned environment, allowing a large unstructured collection of daily construction images to be interactively explored. In addition, sparse reconstructed scenes superimposed over 4D models allow site images to be geo-registered with the as-planned components and consequently, a location-based image processing technique to be implemented and progress data to be extracted automatically. The result of progress comparison study between as-planned and as-built performances can subsequently be visualized in the D4AR - 4D Augmented Reality - environment using a traffic light metaphor. In such an environment, project participants would be able to: 1) use the 4D as-planned model as a baseline for progress monitoring, compare it to daily construction photographs and study workspace logistics; 2) interactively and remotely explore registered construction photographs in a 3D environment; 3) analyze registered images and quantify as-built progress; 4) measure discrepancies between as-planned and as-built performances; and 5) visually represent progress discrepancies through superimposition of 4D as-planned models over progress photographs, make control decisions and effectively communicate those with project participants. We present our preliminary results on two ongoing construction projects and discuss implementation, perceived benefits and future potential enhancement of this new technology in construction, in all fronts of automatic data collection, processing and communication.

  • PDF

IMGT Unique Numbering for Standardized Contact Analysis of Immunoglobulin/antigen and T cell receptor/peptide/MHC Complexes

  • Kaas, Quentin;Chiche, Laurent;Lefrane, Marie-Paule
    • 한국생물정보학회:학술대회논문집
    • /
    • 한국생물정보시스템생물학회 2005년도 BIOINFO 2005
    • /
    • pp.209-214
    • /
    • 2005
  • Immunoglobulins (IG) , T cell receptors (TR) and major histocompatibility complex (MHC) are major components of the immune system. Their experimentally determined three-dimensional (3D) structures are numerous and their retrieval and comparison is problematic. IMGT, the international ImMunoGeneTics information system$^{\circledR}$(http://imgt.cines.fr), has devised controlled vocabulary and annotation rules for the sequences and 3D structures of the IG TR and MHC. Annotated data from IMGT/3D sructure-DB, the IMGT 3D structure database, are used in this paper to compare 3D structure of the domains and receptor, and to characterize IG/antigen, peptide/MHC and TR/peptide/MHC interfaces. The analysis includes angle measures to assess receptor flexibility, structural superimposition and contact analysis. Up-to-date data and analysis results are available at the IMGT Web site, http://imgt.cines.fr.

  • PDF

삼차원 전산화 단층촬영술을 이용한 안모 비대칭환자의 골격 분석 (SKELETAL PATTERN ANALYSIS OF FACIAL ASYMMETRY PATIENT USING THREE DIMENSIONAL COMPUTED TOMOGRAPHY)

  • 최정구;민승기;오승환;권경환;최문기;이준;오세리;유대현
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • 제34권6호
    • /
    • pp.622-627
    • /
    • 2008
  • In orthognathic surgery, precise analysis and diagnosis are essential for successful results. In facial asymmetric patient, traditional 2D image analysis has been used by lateral and P-A Cephalometric view, Skull PA, Panorama, Submentovertex view etc. But clinicians sometimes misdiagnose because they cannot find exact landmark due to superimposition, moreover image can be magnified and distorted by projection technique or patient's skull position, when using these analysis and method. For overcome these defects, analysis by using of 3D CT has been introduced. In this way we can analysis precisely by getting the exact image free of artifact and finding exact landmark with no interruption of superimposition. So we want to review of relationship between various skeletal landmarks of mandible or cranial base and facial asymmetry by predictable analysis using 3D CT. We select the cases of the patients who visited our department for correction of facial asymmetry during 2003-2007 and who were taken image of 3D CT for diagnosis. 3D CT images were reconstructed to 3D image by using V-Work program (Cybermed Inc., Seoul, Korea). And we analysis the relationship between facial asymmetry and various affecting factor of skeletal pattern. The mandibular ramus hight difference between right and left was most affecting factor that express facial asymmetry. And in this research, there was no relationship between cranial base and facial asymmetry. The angulation between facial midline and mandibular ramus divergency has significant relationship with facial asymmetry

알지네이트 인상체에서 제작된 치과용 석고 모형의 정확도에 대한 삼차원 디지털 분석 (Three dimensional accuracy analysis of dental stone casts fabricated using irreversible hydrocolloid impressions)

  • 주용훈;이진한
    • 구강회복응용과학지
    • /
    • 제31권4호
    • /
    • pp.316-328
    • /
    • 2015
  • 목적: 보관 조건과 석고 주입 시간에 따라 알지네이트 인상체로부터 제작된 모형의 정확성을 알아보고자 하였다. 연구 재료 및 방법: 채득된 알지네이트 인상체는 습도가 유지되는 항습조에 보관하는 것과 진료실 내의 공기 중에 노출되는 상태로 보관 조건을 달리하였다. 보관 조건에 따라 각각 즉시, 채득된 후 10분, 30분, 180분, 360분으로 나누어 보관한 후에 석고 모형을 제작하였다. 제작된 석고 모형을 3D 레이저 스캐너로 삼차원 디지털 모형을 구성하였고 구성된 디지털 모형의 참고점에서 거리를 측정하여 변형률을 비교하였다. 또한 각 실험군의 삼차원 디지털 평균 모형을 제작한 후 중첩을 시행함으로써 표면 변위가 발생한 부위와 크기를 확인하였다. 결과: 인상 채득 즉시 제작한 모형의 변형률이 가장 작게 나타났고, 공기 중에 보관한 인상체보다 항습조에 보관한 인상체의 변형률이 작게 나타났다. 석고 주입 시간이 증가함에 따라서 변형률도 증가하였으며, 석고 주입 시간이 180분을 지나면 보관 조건에 관계없이 대구치 부위에서 변형률과 표면 변위가 증가한다. 결론: 알지네이트 인상체로부터 제작된 모형의 정확성을 위해서는 인상 채득 후, 즉시 모형을 제작해야 한다. 보관이 필요한 경우에는 100% 상대습도가 유지되는 항습조를 이용하고, 보관 시간은 180분을 넘지 않도록 해야 정확한 모형을 얻을 수 있다.

3D Image Correlator using Computational Integral Imaging Reconstruction Based on Modified Convolution Property of Periodic Functions

  • Jang, Jae-Young;Shin, Donghak;Lee, Byung-Gook;Hong, Suk-Pyo;Kim, Eun-Soo
    • Journal of the Optical Society of Korea
    • /
    • 제18권4호
    • /
    • pp.388-394
    • /
    • 2014
  • In this paper, we propose a three-dimensional (3D) image correlator by use of computational integral imaging reconstruction based on the modified convolution property of periodic functions (CPPF) for recognition of partially occluded objects. In the proposed correlator, elemental images of the reference and target objects are picked up by a lenslet array, and subsequently are transformed to a sub-image array which contains different perspectives according to the viewing direction. The modified version of the CPPF is applied to the sub-images. This enables us to produce the plane sub-image arrays without the magnification and superimposition processes used in the conventional methods. With the modified CPPF and the sub-image arrays, we reconstruct the reference and target plane sub-image arrays according to the reconstruction plane. 3D object recognition is performed through cross-correlations between the reference and the target plane sub-image arrays. To show the feasibility of the proposed method, some preliminary experiments on the target objects are carried out and the results are presented. Experimental results reveal that the use of plane sub-image arrays enables us to improve the correlation performance, compared to the conventional method using the computational integral imaging reconstruction algorithm.

삼차원 전산화단층촬영사진과 측모두부 방사선규격사진의 계측자에 따른 계측오차에 대한 비교분석 (Comparison of the observer reliability of cranial anatomic landmarks based on cephalometric radiograph and three-dimensional computed tomography scans)

  • 김재영;이동근;이상한
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • 제36권4호
    • /
    • pp.262-269
    • /
    • 2010
  • Introduction: Accurate diagnosis and treatment planning are very important for orthognathic surgery. A small error in diagnosis can cause postoperative functional and esthetic problems. Pre-existing 2-dimensional (D) chephalogram analysis has a high likelihood of error due to its intrinsic and extrinsic problems. A cephalogram can also be inaccurate due to the limited anatomic points, superimposition of the image, and the considerable time and effort required. Recently, an improvement in technology and popularization of computed tomography (CT) provides patients with 3-D computer based cephalometric analysis, which complements traditional analysis in many ways. However, the results are affected by the experience and the subject of the investigator. Materials and Methods: The effects of the sources human error in 2-D cephalogram analysis and 3-D computerized tomography cephalometric analysis were compared using Simplant CMF program. From 2008 Jan to 2009 June, patients who had undergone CT, cephalo AP, lat were investigated. Results: 1. In the 3 D and 2 D images, 10 out of 93 variables (10.4%) and 11 out 44 variables (25%), respectively, showed a significant difference. 2. Landmarks that showed a significant difference in the 2 D image were the points frequently superimposed anatomically. 3. Go Po Orb landmarks, which showed a significant difference in the 3 D images, were found to be the artificial points for analysis in the 2 D image, and in the current definition, these points cannot be used for reproducibility in the 3 D image. Conclusion: Generally, 3-D CT images provide more precise identification of the traditional cephalometric landmark. Greater variability of certain landmarks in the mediolateral direction is probably related to the inadequate definition of the landmarks in the third dimension.

3D 프린팅 및 밀링 방법으로 제작된 임시 보철물 적합도 비교 분석 (Marginal and internal fit of interim crowns fabricated with 3D printing and milling method)

  • 손영탁;손큰바다;이규복
    • 구강회복응용과학지
    • /
    • 제36권4호
    • /
    • pp.254-261
    • /
    • 2020
  • 목적: 본 연구의 목적은 서로 다른 제작 방법인 절삭 가공과 적층 가공 기술로 제작된 임시 보철물의 변연 및 내면 적합도를 평가하는 것이다. 연구 재료 및 방법: 상악 우측 제1대구치를 도재 수복을 위한 지대치 모형으로 준비하였다. 석고를 이용하여 총 40개의 실험 모형으로 복제하였고, 각각의 실험 모형을 구강 스캐너를 사용하여 스캔 데이터를 획득하였다. 3종의 3D 프린터(Meg-printer 2; Megagen, Zenith U; Dentis 그리고 Zenith D; Dentis) 및 1종의 밀링 장비(imes-icore 450i; imes-icore GmbH)를 사용하여 각 그룹당 10개의 임시 보철물을 제작하였다. 임시 보철물의 내면에 실리콘을 채우고 모형에 적합하여 중합이 완료된 후, 실리콘으로 내면이 복제되어 있는 실험 모형을 구강 스캐너를 사용하여 스캔 데이터를 획득하였다. 3차원 검사 소프트웨어(Geomagic control X; 3D Systems)를 이용하여 변연 간격, 절대 변연 간격, 섐퍼, 축벽, 교두, 교합 영역의 적합도를 분석하였다. 통계 분석은 제작 방법의 차이를 비교하기 위해서 Kruskal-Wallis test를 사용하여 검증하였으며, 사후 검정을 위해서 Mann-Whitney U-test and Bonferroni correction method을 사용하였다(α = 0.05). 결과: 3종의 3D 프린터와 1종의 밀링 장비에서 제작된 임시 보철물의 절대 변연 간격은 유의한 차이를 보이지 않았다(P = 0.812). 축벽, 교합 간격에서 밀링 장비와 3D 프린터 사이에 유의한 차이를 보였다(P < 0.001). 결론: 3종의 3D 프린터로 제작된 임시 보철물의 변연 적합도는 모두 임상적 허용 범위(< 120 ㎛)에 있었으므로, 적합도 측면에서 본다면 임시 보철물 제작을 위해서 충분히 사용될 수 있다.