• Title/Summary/Keyword: 3D slope analysis

Search Result 288, Processing Time 0.025 seconds

Numerical Simulation of Propeller Slipstream Effect on Wing Aerodynamic Characteristics (프로펠러 후류 효과로 인한 날개의 공력 특성 수치해석)

  • Park, Y.M.;Kim, C.W.;Chung, J.D.;Lee, H.C.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.202-205
    • /
    • 2011
  • A rotating propeller of turboprop aircraft gives much effect on the aerodynamic characteristics of wing such as lift, moment and stall. Specially, a rotating propeller changes the lift and moment characteristics when aircrafts are in landing or take-off condition. In the present paper, 3-dimensional Navier-Stokes simulations for the interaction of propeller and wing were carried out. For rotating propeller, unsteady sliding mesh method was used to simulate a relative motion. For the power effect analysis in landing and take off configurations, double slotted flap was also considered and the aerodynamic characteristics were investigated. It was shown that the propeller slipstream enhanced the lift slope including maximum lift and this enhancement was more dominant with high lift device.

  • PDF

A Study on the Behavior of Partially Extended Grouted Soil-Nailing (부분적으로 확장된 그라우트 구근을 갖는 쏘일네일링 공법의 거동에 관한 연구)

  • Lee, In;Choi, Seung-Hwan;Kim, Ju-Hyun;Park, Jun-Beom;Kim, Hong-Taek
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.03a
    • /
    • pp.1068-1075
    • /
    • 2009
  • The Soil-nailing installed to the slope or the vertical excavation surface shows reinforce effect using frictional resistance between ground and grout. This friction is showed the more the shape of grout is rough, the more efficient.. This study is about the characteristic behavior of Soil-nailing has partial extension grout made artificially control. In this study, we refer to the new boring machine that can make partially extended grout and perform 3D analysis between of the partial extended grout and the general grout of a cylinder shape using the finite element method for comparing.

  • PDF

Obstacle Position Detection on an Inclined Plane Using Randomized Hough Transform and Corner Detection (랜덤하프변환과 코너추출을 이용한 경사면의 장애물 위치 탐색)

  • Hwang, Sun-Min;Lee, Min-Cheol
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.17 no.5
    • /
    • pp.419-428
    • /
    • 2011
  • This paper suggests a judgement method for an inclined plane before entrance of it and the detection of obstacle position. Main idea is started from the assumption that obstacle is always on the bottom plane, and corner appears at this position. The process to detect the obstacle consists of three steps. First the 3D data using stereo matching is acquired to detect an obstacle. Second a bottom plane is extracted by using limit condition. Last the obstacle position is found by using Harris corner detection. Obstacle position detection on an inclined plane was verified by outdoor and indoor experiment. In error analysis, it is confirmed that an average error of obstacle detection in outdoor was larger than the error in indoor but the error are within about 0.030 m. This method will be applied to unmanned vehicles to navigate under various environment.

Seismic analysis and dynamic behavior characterization of rib-reinforced pre-cast tunnels (리브 보강 프리캐스트 터널의 내진 해석 및 동적거동 특성 파악)

  • Song, Ki-Il;Jung, Sung-Hoon;Cho, Gye-Chun
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.11 no.3
    • /
    • pp.287-301
    • /
    • 2009
  • The novel cut-and-cover tunnel construction method using rib-reinforced pre-cast arch segments has been recently developed and applied for practice to secure a structural stability of high covering and wide width section tunnels. Cut-and-cover tunnels are usually damaged by the seismic behavior of backfill grounds in case of a low covering condition. Seismic analyses are performed in this study to characterize the dynamic behavior of rib-reinforced pre-cast arch cut-and-cover tunnels. Seismic analyzes for 2 lane cast-in-place and rib-reinforced pre-cast arch cut-and-cover tunnels are carried out by using the commercial FDM program (FLAC2D) considering various field conditions such as the covering height embankment slope and excavation slope. It can be concluded that the amplification of seismic wave is reduced due to an increase in the structural stiffness induced by rib-reinforcement. The results show that the rib-reinforced pre-cast arch cut-and-cover tunnels are more effective against the seismic loading, compared to the cast-in-place cut-and-cover tunnels.

A Study of Relative Performance of SPME Method for the Analysis of VOC and Some Major Odorous Compounds (SPME에 기초한 VOC 및 주요 악취물질들의 상대적 검량특성에 대한 연구)

  • Im, Moon-Soon;Song, Hee-Nam;Kim, Ki-Hyun;Sa, Jae-Hwan
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.23 no.1
    • /
    • pp.39-49
    • /
    • 2007
  • In this study, the performance characteristics of solid phase microextraction (SPME) were investigated for three major odorous groups that consist of 10 individual compounds ([1] volatile organic compounds (VOC): benzene, toluene, p-xylene and styrene, [2] reduced sulfur compounds (RSC): hydrogen sulfide, methyl mercaptan, dimethylsulfide (DMS), dimethyldisulfide (DMDS), and carbon disulfide, and [3] amine: trimethylamine (TMA)). For the purpose of a comparative analysis, two types of SPME fiber ([1] polidimethylsiloxane/divinilbenzene (P/D) and [2] $Carboxen^{TM}$/polidimethylsiloxane (C/P)) were test ε d against each other for a series of standards prepared at different concentration levels (100, 200, and 500 ppb). To compare the analytical performance of each fiber, all standards were analyzed for the acquisition of calibration data sets for each compound. The results of P/D fiber generally showed that its calibration slope increased as a function of molecular weight across different VOCs; however, those of C/P fiber showed a fairly reversed trend. Besides, we confirmed that the application of SPME is limited to many sulfur compounds; only two compounds (DMS and DMDS) are sensitive enough to draw calibration results out of SPME. The calibration data for RSC show generally enhanced slop values for C/P relative to P/D fiber. However, in the case of TMA, we were not able to find a notable difference in their performance.

Geographical distribution range and growth environmental characteristics of Deutzia paniculata Nakai, a Korean Endemic Plant (한반도 특산식물 꼬리말발도리의 분포와 생육환경특성)

  • Jung, Ji-young;An, Jong-Bin;Yun, Ho-Geun;Jung, Su-Young;Shin, Hyun-Tak;Son, Sung-won
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.23 no.2
    • /
    • pp.1-16
    • /
    • 2020
  • The current status of geographical distribution range of Deutzia paniculata, one of the korean endemic plants, was investigated based on the species distribution information. The information of the geographical range used for analysis includes all the published references to the distribution of D. paniculata, herbarium specimens in Korea National Arboretum (KH) including its online database: http://www.nature.go.kr, and field research. Although, D. paniculata was firstly recorded in Wonsan, Hamgyeongnam-do, North Korea, this research revelaved that D. paniculata is mainly distributed in Gyeongsangbuk-do and Gyeongsangnam-do, southern regions of the Korean Peninsula. According to the distribution map, this species was estimated on distribution edge of in Anyang region of Gyeonggi-do, Mt. Naejang of Jeollabuk-do and Mt. Taebaek of Gwangwon-do on the distribution edge. However, it was made use of intensive field survey to identify the natural population of the species in these regions. D. paniculata habitat was mainly distributed between 290 meters and 491 meters in altitude, but it was also found ranged from 936 to 959 meters in Gun-wi, Gyeongsangbuk-do, South Korea. The distribution slope was 5° to 35° and the north, N, NE and NW in the aspect. The flora of vascular plants in D. paniculata habitats was listed in 137 taxa: 54 families, 103 genera, 120 species, 2 subspecies, 12 varieties and 3 forms while Korean endemic plants were found in three taxa, Stewartia koreana, Weigela subsessilis and D. Paniculata. Based on a collection of non-biological environment and biological environment data, D. paniculata population were discussed to make strategy and basic research methods for sustainable preservation.

Impacts of wave and tidal forcing on 3D nearshore processes on natural beaches. Part I: Flow and turbulence fields

  • Bakhtyar, R.;Dastgheib, A.;Roelvink, D.;Barry, D.A.
    • Ocean Systems Engineering
    • /
    • v.6 no.1
    • /
    • pp.23-60
    • /
    • 2016
  • The major objective of this study was to develop further understanding of 3D nearshore hydrodynamics under a variety of wave and tidal forcing conditions. The main tool used was a comprehensive 3D numerical model - combining the flow module of Delft3D with the WAVE solver of XBeach - of nearshore hydro- and morphodynamics that can simulate flow, sediment transport, and morphological evolution. Surf-swash zone hydrodynamics were modeled using the 3D Navier-Stokes equations, combined with various turbulence models (${\kappa}-{\varepsilon}$, ${\kappa}-L$, ATM and H-LES). Sediment transport and resulting foreshore profile changes were approximated using different sediment transport relations that consider both bed- and suspended-load transport of non-cohesive sediments. The numerical set-up was tested against field data, with good agreement found. Different numerical experiments under a range of bed characteristics and incident wave and tidal conditions were run to test the model's capability to reproduce 3D flow, wave propagation, sediment transport and morphodynamics in the nearshore at the field scale. The results were interpreted according to existing understanding of surf and swash zone processes. Our numerical experiments confirm that the angle between the crest line of the approaching wave and the shoreline defines the direction and strength of the longshore current, while the longshore current velocity varies across the nearshore zone. The model simulates the undertow, hydraulic cell and rip-current patterns generated by radiation stresses and longshore variability in wave heights. Numerical results show that a non-uniform seabed is crucial for generation of rip currents in the nearshore (when bed slope is uniform, rips are not generated). Increasing the wave height increases the peaks of eddy viscosity and TKE (turbulent kinetic energy), while increasing the tidal amplitude reduces these peaks. Wave and tide interaction has most striking effects on the foreshore profile with the formation of the intertidal bar. High values of eddy viscosity, TKE and wave set-up are spread offshore for coarser grain sizes. Beach profile steepness modifies the nearshore circulation pattern, significantly enhancing the vertical component of the flow. The local recirculation within the longshore current in the inshore region causes a transient offshore shift and strengthening of the longshore current. Overall, the analysis shows that, with reasonable hypotheses, it is possible to simulate the nearshore hydrodynamics subjected to oceanic forcing, consistent with existing understanding of this area. Part II of this work presents 3D nearshore morphodynamics induced by the tides and waves.

Field Application of a Precast Concrete-panel Retaining Wall Adhered to In-situ Ground (원지반 부착식 판넬옹벽의 현장 적용성 평가)

  • Min, Kyoung-Nam;Lee, Jae-Won;Lee, Jung-Gwan;Kang, In-Kyu;Ahn, Tae-Bong
    • The Journal of Engineering Geology
    • /
    • v.26 no.1
    • /
    • pp.51-61
    • /
    • 2016
  • New building methods are needed to aid increased inner-city redevelopment and industrial construction. A particular area of improvement is the efficient use of cut slopes, with the minimization of associated problems. A retaining wall of precast panels can resist the horizontal earth pressure by increasing the shear strength of the ground and reinforcing it through contact with the panels. Precast panels allow quick construction and avoid the problem of concrete deterioration. Other problems to be solved include the digging of borrow pits, the disposal of material cut from the slope, and degradation of the landscape caused by the exposed concrete retaining wall.This study suggest the methods of improvement of an existing precast panel wall system by changing the appearance of the panels to that of natural rock and improving the process of adhering the panel to a vertical slope. The panels were tested in the laboratory and in the field. The laboratory test verified their specific strength and behavior, and the field test assessed the panels' ground adherence at a vertical cutting. Reinforcement of the cutting slope was also measured and compared with the results of 3D numerical analysis. The results of laboratory test, identified that the shear bar increase the punching resistance of panel. And as a results of test construction, identified the construct ability and field applicability of the panel wall system adhered to in-situ ground. In addition to that, extended measurement and numerical analysis, identified the long-term stability of panel wall system adhered to in-situ ground.

Application of Spatial Analysis Modeling to Evaluating Functional Suitability of Forest Lands against Land Slide Hazards (공간분석(空間分析)모델링에 의한 산지(山地)의 토사붕괴방재기능(土砂崩壞防災機能) 적합도(適合度) 평가(評價))

  • Chung, Joosang;Kim, Hyungho;Cha, Jaemin
    • Journal of Korean Society of Forest Science
    • /
    • v.90 no.4
    • /
    • pp.535-542
    • /
    • 2001
  • The objective of this study is to develop a spatial analysis modeling technique to evaluate the functional suitability of forest lands for land slide prevention. The functional suitability is classified into 3 categories of high, medium and low according to the potential of land slide on forest lands. The potential of land slide hazards is estimated using the measurements of 7 major site factors : slope, bed rock, soil depth, shape of slope, forest type and D.B.H. class of trees. The analytic hierarchical process is applied to determining the relative weight of site factors in estimating the potential of land slides. The spatial analysis modeling starts building base layers for the 7 major site factors by $25m{\times}25m$ grid analysis or TIN analysis, reclassifies them and produces new layers containing standardized attribute values, needed in estimating land slide potential. To these attributes, applied is the weight for the corresponding site factor to build the suitability classification map by map algebra analysis. Then, finally, cell-grouping operations convert the suitability classification map to the land unit function map. The whole procedures of the spatial analysis modeling are presented in this paper.

  • PDF

The Analysis of Dissociation Properties According to Gas Hydrate Saturation and Depressurization Rate (가스하이드레이트 포화율 및 감압률에 따른 해리특성 분석)

  • An, Seung-Hee;Chon, Bo-Hyun
    • Journal of the Korean Institute of Gas
    • /
    • v.19 no.3
    • /
    • pp.54-59
    • /
    • 2015
  • The gas hydrate of 10 trillion tons are buried under continental slope in the world(permafrost : 2%, marine continental slope: 98%), but technology for the the commercial gas recovery has not developed yet. There are normally four representative recovery methods: depressurization method, thermal stimulation method, inhibition injection method, and displacement method. This study focuses on change of dissociation time and gas production according to gas hydrate saturation rate and depressurization rate. It was found that the correlation between depressrization rate and dissociation time was like as $Y=0.0004X^2-0.499X+176.86$. It was also found that the bigger depressurization rate is, the better production is(methane gas is produced over 46.2% at depressurization rate 50% compared with 40%). However, on the contrary to this, it is presumed that gas production is decreased at 60% due to gas hydrate reformation.