• 제목/요약/키워드: 3D scanning technology

검색결과 519건 처리시간 0.029초

라인레이저를 이용한 3D 모델 추출 방법 (3D Extraction Method Using a Low Cost Line Laser)

  • 윤춘호;김태기;조용욱;남기원;임충혁
    • 한국생산제조학회지
    • /
    • 제26권1호
    • /
    • pp.108-113
    • /
    • 2017
  • In this paper, we proposed a three-dimensional(3D) scanning system based on laser vision technique for 3D model reconstruction. The proposed scanning system consists of line laser, camera, and turntable. We implemented the 3D scanning system using low quality elements. Although these are low quality elements, we reduced the 3D data reconstruction errors greatly using two methods. First, we developed a maximum brightness detection algorithm. This algorithm extracts the maximum brightness of the line laser to obtain the shape of the object. Second, we designed a new laser control device. This device helps to adjust the relative position of the turntable and line laser. These two methods greatly reduce the measuring noise. As a result, point cloud data can be obtained without complicated calculations.

레이저스캐닝과 포토그래메트리 소프트웨어 기술을 이용한 조경 수목 3D모델링 재현 특성 비교 (Comparison of Virtual 3D Tree Modelling Using Photogrammetry Software and Laser Scanning Technology)

  • 박재민
    • 한국정보통신학회논문지
    • /
    • 제24권2호
    • /
    • pp.304-310
    • /
    • 2020
  • 본 연구는 레이저스캐닝과 포토그래메트리 소프트웨어를 이용한 3D모델링과 실제 수목 사이의 재현 특성(수형, 질감, 세부 치수)을 비교분석하여 그 활용성을 밝히는데 있다. 연구 방법은 포토그래메트리(Pix4d)와 3D스캐너(Faro S350)를 이용하여 향나무를 3D모델링으로 재현하였다. 연구 결과 3D스캐닝과 포토그래메트리 모두 높은 재현성을 보였다. 특히 원거리에서 UAVs로 촬영한 포토그래메트리에 비해, 3D스캐닝 기술은 수피와 잎의 재현에 있어 매우 우수한 결과를 보였다. 수목의 세부 치수를 비교한 결과, 실제 수목과 3D스캐닝 사이의 오차는 1.7~2.2%로 스캐닝 결과가 실제 수목보다 크게 나타났으며, 실제 수목과 포토그래메트리 사이의 오차는 0.2~0.5%로 포토그래메트리에 의한 모델링이 실제 수목보다 크게 측정되었다. 본 연구는 수목의 가상 3D모델링 구현특성을 살핌으로써, 향후 BIM을 위한 조경수목 DB 구축, 증강현실 연계 조경 설계 및 경관 분석, 노거수의 보전 등의 활용을 위한 기초 연구로서 의의를 가진다.

Development of a 3D earthwork model based on reverse engineering

  • Kim, Sung-Keun
    • 국제학술발표논문집
    • /
    • The 6th International Conference on Construction Engineering and Project Management
    • /
    • pp.641-642
    • /
    • 2015
  • Unlike for other building processes, BIM for earthwork does not need a large variety of 3D model shapes; however, it requires a 3D model that can efficiently reflect the changing features of the ground shape and provide soil type-dependent workload calculation and information on equipment for optimal management. Objects for earthwork have not yet been defined because the current BIM system does not provide them. The BIM technology commonly applied in the manufacturing center uses real-object data obtained through 3D scanning to generate 3D parametric solid models. 3D scanning, which is used when there are no existing 3D models, has the advantage of being able to rapidly generate parametric solid models. In this study, A method to generate 3D models for earthwork operations using reverse engineering is suggested. 3D scanning is used to create a point cloud of a construction site and the point cloud data are used to generate a surface model, which was then converted into a parametric model with 3D objects for earthwork

  • PDF

3D SCANNING을 활용한 비정형 외장재의 시공 공법 검토 (Construction Methods Review of Freeform Envelope Using 3D Scanning)

  • 김성진;박성진;최영재;류한국
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2014년도 추계 학술논문 발표대회
    • /
    • pp.100-101
    • /
    • 2014
  • The generation of 3D models for freeform buildings is an important task while continuous monitoring of the related spatial information at different time phases. Realistic models of freeform building have to provide high geometric accuracy and detail at an effective data size.(Al-kheder, S. 2008) The efficiency of this image-based technique has been increased considerably by the development of digital technologies. Furthermore, 3D data collection based on laser scanning has become an high quality 3D models for construction site. Therefore, in this research, we have an effort to review construction methods to make freeform envelope of building using 3D scanning technology.

  • PDF

지상레이저스캐닝 데이터를 활용한 3차원 지반지형 분석 플랫폼 개발 (Development of 3D Terrain Processing Platform Using Terrestrial Laser Scanning Data)

  • 김석;김태영
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2016년도 춘계 학술논문 발표대회
    • /
    • pp.227-228
    • /
    • 2016
  • Terrestrial laser scanning (TLS) technology is being applied to various fields such as the soil volume calculation and the displacement measurement of terrain, tunnels and dams. This study develops a 3D terrain processing platform for automated earth work using a terrestrial laser scanning data as the software prototype. The developed software provides cells with geo-technical information for planning work to an integrated system.

  • PDF

실무 3D 스캐닝 및 BIM 활용을 위한 발주자 - 실무자 간 협업프로세스 모델 (A collaborative process between employers and practitioners for utilization of BIM and 3D scanning)

  • 김도영
    • 한국BIM학회 논문집
    • /
    • 제11권2호
    • /
    • pp.33-42
    • /
    • 2021
  • In construction sites, policies are changing considering the convergence of 3D scanning and BIM. In order to respond to this, it is urgent to develop guidelines for systematic collaboration methods that take into account the perspectives of practitioners. By participating in the delivery process using 3D scanning technology, tasks such as ordering, field scanning are defined in terms of mutual communications. Also, the collaboration process is about communications between off-site and on-site, such as feed-back using data and documents. In the future, we will propose guidelines based on such collaborative process models.

Utilizing 3D Laser Scanning Technology for Remodeling Work of Building Inside

  • Lee, Jin-Duk;Han, Seung-Hee;Lee, Jae-Bin
    • International Journal of Contents
    • /
    • 제5권3호
    • /
    • pp.19-23
    • /
    • 2009
  • Laser scanning technology is a maturing measurement technology which is capable of obtaining 3D measurement data of objects with high-accuracy, high-resolution and in a short time. Laser scanners are used more and more as surveying instruments for various applications. This paper describes the procedure of 3D data acquirement using terrestrial LiDAR and section drawing extraction through a series of processing for remodeling the interior of a department building. Accurate drawings are needed for improvement construction of building interior. However if the design drawings of that time of construction work were lost or damaged or actual dimensions of drawings differ from those of design drawings, the interior should be resurveyed. In this study, the extraction process of interior plane figures were suggested through using laser scanning and related reverse engineering software

3 차원 곡면 데이터 획득을 위한 멀티 레이져 비젼 시스템 개발 (Development of Multi-Laser Vision System For 3D Surface Scanning)

  • 이정환;권기연;이현철;도영칠;최두진;박진형;김대경;박영준
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2008년도 추계학술대회A
    • /
    • pp.768-772
    • /
    • 2008
  • Various scanning systems have been studied in many industrial areas to acquire a range data or to reconstruct an explicit 3D model. Currently optical technology has been used widely by virtue of noncontactness and high-accuracy. In this paper, we describe a 3D laser scanning system developped to reconstruct the 3D surface of a large-scale object such as a curved-plate of ship-hull. Our scanning system comprises of 4ch-parallel laser vision modules using a triangulation technique. For multi laser vision, calibration method based on least square technique is applied. In global scanning, an effective method without solving difficulty of matching problem among the scanning results of each camera is presented. Also minimal image processing algorithm and robot-based calibration technique are applied. A prototype had been implemented for testing.

  • PDF

Three-Dimensional Surface Imaging is an Effective Tool for Measuring Breast Volume: A Validation Study

  • Lee, Woo Yeon;Kim, Min Jung;Lew, Dae Hyun;Song, Seung Yong;Lee, Dong Won
    • Archives of Plastic Surgery
    • /
    • 제43권5호
    • /
    • pp.430-437
    • /
    • 2016
  • Background Accurate breast volume assessment is a prerequisite to preoperative planning, as well as intraoperative decision making in breast reconstruction surgery. The use of three-dimensional surface imaging (3D scanning) to assess breast volume has many advantages. However, before employing 3D scanning in the field, the tool's validity should be demonstrated. The purpose of this study was to confirm the validity of 3D-scanning technology for evaluating breast volume. Methods We reviewed the charts of 25 patients who underwent breast reconstruction surgery immediately after total mastectomy. Breast volumes using the Axis Three 3D scanner, water-displacement technique, and magnetic resonance imaging (MRI) were obtained bilaterally in the preoperative period. During the operation, the tissue removed during total mastectomy was weighed and the specimen volume was calculated from the weight. Then, we compared the volume obtained from 3D scanning with those obtained using the water-displacement technique, MRI, and the calculated volume of the tissue removed. Results The intraclass correlation coefficient (ICC) of breast volumes obtained from 3D scanning, as compared to the volumes obtained using the water-displacement technique and specimen weight, demonstrated excellent reliability. The ICC of breast volumes obtained using 3D scanning, as compared to those obtained by MRI, demonstrated substantial reliability. Passing-Bablok regression showed agreement between 3D scanning and the water-displacement technique, and showed a linear association of 3D scanning with MRI and specimen volume, respectively. Conclusions When compared with the classical water-displacement technique and MRI-based volumetry, 3D scanning showed significant reliability and a linear association with the other two methods.

3D Laser Scanning을 활용한 화재 손상 부위의 보수·보강 물량 산출 방식 개선에 관한 연구 (A Study on the Improvement of Repair and Reinforcement Quantity Take-off in Fire-damaged Area Using 3D Laser Scanning)

  • 정희재;함남혁;이병도;박광민;김재준
    • 한국BIM학회 논문집
    • /
    • 제9권1호
    • /
    • pp.11-21
    • /
    • 2019
  • Recently, there is an increase in fire incidents in building structures. Due to this, the importance of fire-damaged buildings' safety diagnosis and evaluation after fire is growing. However, the existing fire-damaged safety diagnosis and evaluation methods are personnel-oriented, so the diagnostic results are intervened by investigators' subjectivity and unquantified. Thus, improper repair and reinforcement can result in secondary damage accidents and economic losses. In order to overcome these limitations, this study proposes using 3D laser scanning technology. The case analysis of fire-damaged building structures was conducted to verify the effectiveness of accuracy and manpowering by comparing the existing method and the proposed method. The proposed method using 3D laser scanning technology to obtain point cloud data of fire-damaged field. The point cloud data and BIM model is combined to inspect the fire-damaged area and depth. From inspection, quantified repair and reinforcement quantity take-off can be acquired. Also, the proposed method saves half of the manpowering within same time period compared to the existing method. Therefore, it seems that using 3D laser scanning technology in fire-damaged safety diagnosis and evaluation will improve in accuracy and saving time and manpowering.