• Title/Summary/Keyword: 3D scanners

Search Result 139, Processing Time 0.02 seconds

In-vitro evaluation of marginal and internal fit of 3-unit monolithic zirconia restorations fabricated using digital scanning technologies

  • Ozal, Cise;Ulusoy, Mutahhar
    • The Journal of Advanced Prosthodontics
    • /
    • v.13 no.6
    • /
    • pp.373-384
    • /
    • 2021
  • PURPOSE. This study aimed to compare the marginal and internal fit of 3-unit monolithic zirconia restorations that were designed by using the data obtained with the aid of intraoral and laboratory scanners. MATERIALS AND METHODS. For the fabrication of 3-unit monolithic zirconia restorations using impressions taken from the maxillary master cast, plaster cast was created and scanned in laboratory scanners (InEos X5 and D900L). The main cast was also scanned with different intraoral scanners (Omnicam [OMNI], Primescan [PS], Trios 3 [T3], Trios 4 [T4]) (n = 12 per group). Zirconia fixed partial dentures were virtually designed, produced from presintered block, and subsequently sintered. Marginal and internal discrepancy values (in ㎛) were measured by using silicone replica method under stereomicroscope. Data were statistically analyzed by using 1-way ANOVA and Kruskal Wallis tests (P<.05). RESULTS. In terms of marginal adaptation, the measurements on the canine tooth indicated better performance with intraoral scanners than those in laboratory scanners, but there was no difference among intraoral scanners (P<.05). In the premolar tooth, PS had the lowest marginal (86.9 ± 19.2 ㎛) and axial (92.4 ± 14.8 ㎛), and T4 had the lowest axio-occlusal (89.4 ± 15.6 ㎛) and occlusal (89.1 ± 13.9 ㎛) discrepancy value. In both canine and premolar teeth, the D900L was found to be the most marginally and internally inconsistent scanner. CONCLUSION. Within the limits of the study, marginal and internal discrepancy values were generally lower in intraoral scanners than in laboratory scanners. Marginal discrepancy values of scanners were clinically acceptable (< 120 ㎛), except D900L.

A comparison of the accuracy of intraoral scanners using an intraoral environment simulator

  • Park, Hye-Nan;Lim, Young-Jun;Yi, Won-Jin;Han, Jung-Suk;Lee, Seung-Pyo
    • The Journal of Advanced Prosthodontics
    • /
    • v.10 no.1
    • /
    • pp.58-64
    • /
    • 2018
  • PURPOSE. The aim of this study was to design an intraoral environment simulator and to assess the accuracy of two intraoral scanners using the simulator. MATERIALS AND METHODS. A box-shaped intraoral environment simulator was designed to simulate two specific intraoral environments. The cast was scanned 10 times by Identica Blue (MEDIT, Seoul, South Korea), TRIOS (3Shape, Copenhagen, Denmark), and CS3500 (Carestream Dental, Georgia, USA) scanners in the two simulated groups. The distances between the left and right canines (D3), first molars (D6), second molars (D7), and the left canine and left second molar (D37) were measured. The distance data were analyzed by the Kruskal-Wallis test. RESULTS. The differences in intraoral environments were not statistically significant (P>.05). Between intraoral scanners, statistically significant differences (P<.05) were revealed by the Kruskal-Wallis test with regard to D3 and D6. CONCLUSION. No difference due to the intraoral environment was revealed. The simulator will contribute to the higher accuracy of intraoral scanners in the future.

Fast 3D mesh generation using projection for line laser-based 3D Scanners (라인 레이저 기반 3차원 스캐너에서 투영을 이용한 고속 3D 메쉬 생성)

  • Lee, Kyungme;Yoo, Hoon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.3
    • /
    • pp.513-518
    • /
    • 2016
  • This paper presents a fast 3D mesh generation method using projection for line laser-based 3D scanners. The well-known method for 3D mesh generation utilizes convex hulls for 4D vertices that is converted from the input 3D vertices. This 3D mesh generation for a large set of vertices requires a lot of time. To overcome this problem, the proposed method takes (${\theta}-y$) 2D depth map into account. The 2D depth map is a projection version of 3D data with a form of (${\theta}$, y, z) which are intermediately acquired by line laser-based 3D scanners. Thus, our 2D-based method is a very fast 3D mesh generation method. To evaluate our method, we conduct experiments with intermediate 3D vertex data from line-laser scanners. Experimental results show that the proposed method is superior to the existing method in terms of mesh generation speed.

A Study on the Evaluation of Repeated Measurement Stability of 3D Tooth Model Obtained by Several Dental Scanners (수종의 치과용 스캐너로 채득된 3차원 치아 모형의 반복측정 안정성 평가 연구)

  • Bae, Eun-Jeong;Kim, Won-Soo;Lim, Joong Yeon
    • The Journal of the Korea Contents Association
    • /
    • v.21 no.5
    • /
    • pp.996-1003
    • /
    • 2021
  • The purpose of this study is to evaluate the reliability of repeated measurements of several dental scanners. Blue-lighted scanners, white-light scanners and optical-type scanners are used in the study of repeatability in this study. The measurement results were calculated as root mean square (RMS) and the significance level was confirmed by applying the 1-way ANOVA statistical technique (𝛼=.05). According to the statistical analysis, the scanner with the largest RMS value was Z-opt group (38.2 ㎛. Next, D-white was 35.2 ㎛ and the group with the lowest RMS value was I-blue (34.1 ㎛). The comparison of RMS means between each group was not significant (p>.05). From this result, the blue light had the lowest error in repeatability of dental scanners, but no statistical significance. The conclusion of this study is that the study results are clinically acceptable.

Accuracy of 14 intraoral scanners for the All-on-4 treatment concept: a comparative in vitro study

  • Gozde, Kaya;Caglar, Bilmenoglu
    • The Journal of Advanced Prosthodontics
    • /
    • v.14 no.6
    • /
    • pp.388-398
    • /
    • 2022
  • PURPOSE. This in vitro study aimed to evaluate the accuracy of 14 different intraoral scanners for the All-on-4 treatment concept. MATERIALS AND METHODS. Four implants were placed in regions 13, 16, 23, and 26 of an edentulous maxillary model that was poured with scannable Type 4 gypsum to imitate the All-on-4 concept. The cast was scanned 10 times for each of 14 intraoral scanners (Primescan, iTero 2, iTero 5D, Virtuo Vivo, Trios 3, Trios 4, CS3600, CS3700, Emerald, Emerald S, Medit i500, BenQ BIS-I, Heron IOS, and Aadva IOS 100P) after the polyether ether ketone scanbody was placed. For the control group, the gypsum model was scanned 10 times with an industrial scanner. The first of the 10 virtual models obtained from the industrial model was chosen as the reference model. For trueness, the data of the 14 dental scanners were superimposed with the reference model; for precision, the data of all 14 scanners were superimposed within the groups. Statistical analyses were performed using the Kolmogorov-Smirnov, Shapiro-Wilks, and Dunn's tests. RESULTS. Primescan showed the highest trueness and precision values (P < .005), followed by the iTero 5D scanner (P < .005). CONCLUSION. Some of these digital scanners can be used to make impressions within the All-on-4 concept. However, the possibility of data loss due to artifacts, reflections, and the inability to combine the data should be considered.

Verification of the Accuracy of Photogrammetry in 3D Full-Body Scanning -A Case Study for Apparel Applications-

  • Eun Joo Ryu;Lu Zhang;Hwa Kyung Song
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.47 no.1
    • /
    • pp.137-151
    • /
    • 2023
  • Stationary 3D whole-body scanners generally require 5 to 20 seconds of scanning time and cannot effectively detect armpit and crotch areas. Therefore, this study aimed to analyze the accuracy of a photogrammetric technique using a multi-camera system. First, dimensional accuracy was analyzed using a mannequin scan, comparing the differences between the scan-derived measurements and the direct measurements, with an allowable tolerance of ISO 20685-1:2018. Only 2 of 59 measurement items (ankle height and upper arm circumference, specifically) exceeded the ISO 20685-1:2018 criteria. When compared with the results of the eight stationary whole-body scanners assessed by the literature, the photogrammetric technique was found to have the advantage of scanning the top of the head, armpit, and crotch areas clearly. Second, this study found the photogrammetric technique is suitable for obtaining the body scans because it can minimize the perform scanning, resulting in a reduction of measurement errors due to breathing and uncontrolled movements. The error rate of the photogrammetry method was much lower than that of stationary 3D whole-body scanners.

3D City Modeling Using Laser Scan Data

  • Kim, Dong-Suk;Lee, Kwae-Hi
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.505-507
    • /
    • 2003
  • This paper describes techniques for the automated creation of geometric 3D models of the urban area us ing two 2D laser scanners and aerial images. One of the laser scanners scans an environment horizontally and the other scans vertically. Horizontal scanner is used for position estimation and vertical scanner is used for building 3D model. Aerial image is used for registration with scan data. Those models can be used for virtual reality, tele-presence, digital cinematography, and urban planning applications. Results are shown with 3D point cloud in urban area.

  • PDF

A novel method for testing accuracy of bite registration using intraoral scanners

  • Lydia Kakali;Demetrios J. Halazonetis
    • The korean journal of orthodontics
    • /
    • v.53 no.4
    • /
    • pp.254-263
    • /
    • 2023
  • Objective: The evidence on the accuracy of bite registration using intraoral scanners is sparse. This study aimed to develop a new method for evaluating bite registration accuracy using intraoral scanners. Methods: Two different types of models were used; 10 stone models and 10 with acrylic resin teeth. A triangular frame with cylindrical posts at each apex (one anterior and two posteriors) was digitally designed and manufactured using three-dimensional (3D) printing. Such a structure was fitted in the lingual space of each maxillary and mandibular model so that, in occlusion, the posts would contact their opposing counterparts, enforcing a small interocclusal gap between the two arches. This ensured no tooth interference and full contact between opposing posts. Bite registration accuracy was evaluated by measuring the distance between opposing posts, with small values indicating high-accuracy. Three intraoral scanners were used: Medit i500, Primescan, and Trios 4. Viewbox software was used to measure the distance between opposing posts and compute roll and pitch. Results: The average maximum error in interocclusal registration exceeded 50 ㎛. Roll and pitch orientation errors ranged above 0.1 degrees, implying an additional interocclusal error of around 40 ㎛ or more. The models with acrylic teeth exhibited higher errors. Conclusions: A method that avoids the need for reference hardware and the imprecision of locating reference points on tooth surfaces, and offers simplicity in the assessment of bite registration with an intraoral scanner, was developed. These results suggest that intraoral scanners may exhibit clinically significant errors in reproducing the interocclusal relationships.

Effect of the volumetric dimensions of a complete arch on the accuracy of scanners

  • Kim, Min-Kyu;Son, KeunBaDa;Yu, Beom-Young;Lee, Kyu-Bok
    • The Journal of Advanced Prosthodontics
    • /
    • v.12 no.6
    • /
    • pp.361-368
    • /
    • 2020
  • PURPOSE. The present study aimed to evaluate the accuracy of a desktop scanner and intraoral scanners based on the volumetric dimensions of a complete arch. MATERIALS AND METHODS. Seven reference models were fabricated based on the volumetric dimensions of complete arch (70%, 80%, 90%, 100%, 110%, 120%, and 130%). The reference models were digitized using an industrial scanner (Solutionix C500; MEDIT) for the fabrication of a computer-aided design (CAD) reference model (CRM). The reference models were digitized using three intraoral scanners (CS3600, Trios3, and i500) and one desktop scanner (E1) to fabricate a CAD test model (CTM). CRM and CTM were then superimposed using inspection software, and 3D analysis was conducted. For statistical analysis, one-way analysis of variance was used to verify the difference in accuracy based on the volumetric dimensions of the complete arch and the accuracy based on the scanners, and the differences among the groups were analyzed using the Tukey HSD test as a post-hoc test (α=.05). RESULTS. The three different scanners showed a significant difference in accuracy based on the volumetric dimensions of the complete arch (P<.05), but the desktop scanner did not show a significant difference in accuracy based on the volumetric dimensions of the complete arch (P=.808). CONCLUSION. The accuracy of the intraoral scanners was dependent on the volumetric dimensions of the complete arch, but the volumetric dimensions of the complete arch had no effect on the accuracy of the desktop scanner. Additionally, depending on the type of intraoral scanners, the accuracy differed according to the volumetric dimensions of the complete arch.

A comparison of the precision of three-dimensional images acquired by 2 digital intraoral scanners: effects of tooth irregularity and scanning direction

  • Anh, Ji-won;Park, Ji-Man;Chun, Youn-Sic;Kim, Miae;Kim, Minji
    • The korean journal of orthodontics
    • /
    • v.46 no.1
    • /
    • pp.3-12
    • /
    • 2016
  • Objective: The purpose of this study was to compare the precision of three-dimensional (3D) images acquired using iTero$^{(R)}$(Align Technology Inc., San Jose, CA, USA) and Trios$^{(R)}$(3Shape Dental Systems, Copenhagen, Denmark) digital intraoral scanners, and to evaluate the effects of the severity of tooth irregularities and scanning sequence on precision. Methods: Dental arch models were fabricated with differing degrees of tooth irregularity and divided into 2 groups based on scanning sequence. To assess their precision, images were superimposed and an optimized superimposition algorithm was employed to measure any 3D deviation. The t-test, paired t-test, and one-way ANOVA were performed (p < 0.05) for statistical analysis. Results: The iTero$^{(R)}$ and Trios$^{(R)}$ systems showed no statistically significant difference in precision among models with differing degrees of tooth irregularity. However, there were statistically significant differences in the precision of the 2 scanners when the starting points of scanning were different. The iTero$^{(R)}$ scanner (mean deviation, $29.84{\pm}12.08{\mu}m$) proved to be less precise than the Trios$^{(R)}$ scanner ($22.17{\pm}4.47{\mu}m$). Conclusions: The precision of 3D images differed according to the degree of tooth irregularity, scanning sequence, and scanner type. However, from a clinical standpoint, both scanners were highly accurate regardless of the degree of tooth irregularity.