• 제목/요약/키워드: 3D robot simulator

검색결과 60건 처리시간 0.037초

3D 기반 시뮬레이터를 이용한 휴머노이드 로봇 개발 플랫폼 설계 (Design of Humanoid Robot Development Platform Using 3D Based Simulator)

  • 곽환주;박귀태
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2008년도 제39회 하계학술대회
    • /
    • pp.1825-1826
    • /
    • 2008
  • 본 논문은 3D 기반 시뮬레이터를 이용한 새로운 휴머노이드 로봇 개발 플랫폼 설계에 관한 연구이다. 높은 자유도의 휴머노이드 로봇의 빠르고 쉬운 개발을 위해서는 편리하며 개발에 효율적인 시뮬레이터 개발 플랫폼이 필수적이다. 실제 로봇 제어를 고려한 새로운 3D 기반의 시뮬레이터 설계 및 구조를 제시한다. 또한, 휴머노이드 로봇의 주어진 임무 수행시 실제 로봇의 움직임에 따른 대상 물체의 탐지 및 실시간 시뮬레이터에의 적용에 의한 로봇 동작 제어 방법을 제시한다. 본 연구의 시뮬레이터의 효율성 및 정확성은 시뮬레이션 및 실제 로봇을 이용한 실험을 통하여 확인한다.

  • PDF

OpenGL을 이용한 3-D 로봇시뮬레이터 개발 (The Development of 3-D Robot Simulator Using OpenGL)

  • 김승준;최은석;안병하
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2000년도 하계학술대회 논문집 D
    • /
    • pp.2877-2879
    • /
    • 2000
  • 본 연구에서는 로봇의 3가지 기본모델에대해 OpenGL을 이용하여 3-D 로봇시뮬레이터를 구현하였다 또한. 개발된 로봇시뮬레이터에 간단한 출력제어기를 적용하여 제어알고리즘의 특성이 잘 나타나는지를 확인하였고, 실제 로봇의 하드웨어적 특성을 적용하여 로봇시뮬레이터와 실제로봇에서의 실험결과를 비교하였다.

  • PDF

심층 강화학습을 이용한 모바일 로봇의 맵 기반 장애물 회피 알고리즘 (Map-Based Obstacle Avoidance Algorithm for Mobile Robot Using Deep Reinforcement Learning)

  • 선우영민;이원창
    • 전기전자학회논문지
    • /
    • 제25권2호
    • /
    • pp.337-343
    • /
    • 2021
  • 심층 강화학습은 학습자가 가공되지 않은 고차원의 입력 데이터를 기반으로 최적의 행동을 선택할 수 있게 하는 인공지능 알고리즘이며, 이를 이용하여 장애물들이 존재하는 환경에서 모바일 로봇의 최적 이동 경로를 생성하는 연구가 많이 진행되었다. 본 논문에서는 복잡한 주변 환경의 이미지로부터 모바일 로봇의 이동 경로를 생성하기 위하여 우선 순위 경험 재사용(Prioritized Experience Replay)을 사용하는 Dueling Double DQN(D3QN) 알고리즘을 선택하였다. 가상의 환경은 로봇 시뮬레이터인 Webots를 사용하여 구현하였고, 시뮬레이션을 통해 모바일 로봇이 실시간으로 장애물의 위치를 파악하고 회피하여 목표 지점에 도달하는 것을 확인하였다.

장애물과 특이점의 회피를 위한 강인한 로봇의 궤적계획 (Robust Trajectory Planner for Obstacle and Singularity Avoisnce in a Robot Manipulator)

  • 임남일;안두성;손권
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1993년도 추계학술대회 논문집
    • /
    • pp.593-597
    • /
    • 1993
  • This paper introduces robust trajectory planner for obstacle and singularity avoidance in a nonresonant robot manipulator. In this work, we propose new trajectory generator in cartesian space by use of Bezier function. Also, SR-inverse is used for obstacle and singularity avoidance of nonredundant robot. This result is verified with 3-D simulator which has been developed to examine the effectiveness of the suggested method.

  • PDF

B-COV:Bio-inspired Virtual Interaction for 3D Articulated Robotic Arm for Post-stroke Rehabilitation during Pandemic of COVID-19

  • Allehaibi, Khalid Hamid Salman;Basori, Ahmad Hoirul;Albaqami, Nasser Nammas
    • International Journal of Computer Science & Network Security
    • /
    • 제21권2호
    • /
    • pp.110-119
    • /
    • 2021
  • The Coronavirus or COVID-19 is contagiousness virus that infected almost every single part of the world. This pandemic forced a major country did lockdown and stay at a home policy to reduce virus spread and the number of victims. Interactions between humans and robots form a popular subject of research worldwide. In medical robotics, the primary challenge is to implement natural interactions between robots and human users. Human communication consists of dynamic processes that involve joint attention and attracting each other. Coordinated care involves sharing among agents of behaviours, events, interests, and contexts in the world from time to time. The robotics arm is an expensive and complicated system because robot simulators are widely used instead of for rehabilitation purposes in medicine. Interaction in natural ways is necessary for disabled persons to work with the robot simulator. This article proposes a low-cost rehabilitation system by building an arm gesture tracking system based on a depth camera that can capture and interpret human gestures and use them as interactive commands for a robot simulator to perform specific tasks on the 3D block. The results show that the proposed system can help patients control the rotation and movement of the 3D arm using their hands. The pilot testing with healthy subjects yielded encouraging results. They could synchronize their actions with a 3D robotic arm to perform several repetitive tasks and exerting 19920 J of energy (kg.m2.S-2). The average of consumed energy mentioned before is in medium scale. Therefore, we relate this energy with rehabilitation performance as an initial stage and can be improved further with extra repetitive exercise to speed up the recovery process.

ZMP Compensation Algorithm for Stable Posture of a Humanoid Robot

  • Hwang, Byung-Hun;Kong, Jung-Shik;Lee, Bo-Hee;Kim, Jin-Geol;Huh, Uk-Youl
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2005년도 ICCAS
    • /
    • pp.2271-2274
    • /
    • 2005
  • The desired ZMP is different from the actual ZMP of a humanoid robot during actual walking and stand upright. A humanoid robot must maintain its stable posture although external force is given to the robot. A humanoid robot can know its stability with ZMP. Actual ZMP may be moved out of the foot-print polygons by external disturbance or uneven ground surfaces. If the position of ZMP moves out of stable region, the stability can not be guaranteed. Therefore, The control of the ZMP is necessary. In this paper, ZMP control algorithm is proposed. Herein, the ZMP control uses difference between desired ZMP and actual ZMP. The proposed algorithm gives reaction moment with ankle joint when external force is supplied. 3D simulator shows motion of a humanoid robot and calculated data.

  • PDF

증기발생기 노즐댐 취급용 원격조작 로봇 시스템 설계 (Design of teleoperated robot system for nozzle dam maintenance in steam generator)

  • 황석용;김창회;김병수;이영광;김승호;이종민
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1993년도 한국자동제어학술회의논문집(국내학술편); Seoul National University, Seoul; 20-22 Oct. 1993
    • /
    • pp.815-820
    • /
    • 1993
  • Robotic technology has been grown up conspicuously by its versatility. KAERI has been involved in one of facets of robot industry to keep abreast of rapid evolving technologies In robotic field and has launched long-term R&D plan to assure the stable nuclear energy. In this paper, the latest development status of teleoperated robot system has been presented with emphasis the configuration of overall control system with 3 dimensional graphic system that provides operators with tele-presence situation. This robot system under development, composed of master-slave arm with controller and graphic simulator, is operated by a master manipulator to enable an installation and removal operation of nozzle dam system for steam generator. Evaluation and analysis has been carried out to get optimal parameters of robot system.

  • PDF

차량 운전 시뮬레이터에서 모션과 영상의 동기화를 위한 알고리즘 및 구현 방안 (Motion and Image Matching Algorithms and Implementation for Motion Synchronization in a Vehicle Driving Simulator)

  • 김헌세;김대섭;김동환
    • 로봇학회논문지
    • /
    • 제12권2호
    • /
    • pp.184-193
    • /
    • 2017
  • This work shows how to create an algorithm and implementation for motion and image matching between a vehicle simulator and Unity 3D based virtual object. The motion information of the virtual vehicle is transmitted to the real simulator via a RS232 communication protocol, and the motion is controlled based on the inverse kinematics solution of the platform adopting rotary-type six actuators driving system. Wash-out filters to implement the effective motion of the motion platform are adopted, and thereby reduce the dizziness and increase the realistic sense of motion. Furthermore, the simulator system is successfully designed aiming to reducing size and cost with adaptation of rotary-type six actuators, real driving environment via VR (Virtual Reality), and control schemes which employ a synchronization between 6 motors and 3rd order motion profiles. By providing relatively big sense of motion particularly in impact and straight motions mainly causing simulator sickness, dizziness is remarkably reduced, thereby enhancing the sense of realistic motion.

ROS 기반 자율주행 알고리즘 성능 검증을 위한 시뮬레이션 환경 개발 (Development of Simulation Environment for Autonomous Driving Algorithm Validation based on ROS)

  • 곽지섭;이경수
    • 자동차안전학회지
    • /
    • 제14권1호
    • /
    • pp.20-25
    • /
    • 2022
  • This paper presents a development of simulation environment for validation of autonomous driving (AD) algorithm based on Robot Operating System (ROS). ROS is one of the commonly-used frameworks utilized to control autonomous vehicles. For the evaluation of AD algorithm, a 3D autonomous driving simulator has been developed based on LGSVL. Two additional sensors are implemented in the simulation vehicle. First, Lidar sensor is mounted on the ego vehicle for real-time driving environment perception. Second, GPS sensor is equipped to estimate ego vehicle's position. With the vehicle sensor configuration in the simulation, the AD algorithm can predict the local environment and determine control commands with motion planning. The simulation environment has been evaluated with lane changing and keeping scenarios. The simulation results show that the proposed 3D simulator can successfully imitate the operation of a real-world vehicle.

PHANToM Device 를 이용한 다관절 로봇의 원격제어 시스템 설계 (Design of Remote Manipulator Control System using PHANToM Device)

  • 김현상;김미경;강희준;서영수
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2004년도 추계학술대회 논문집
    • /
    • pp.241-245
    • /
    • 2004
  • This paper shows the development of remote control system for manipulators which consists of PHANToM Device as a master, Samsung FARA robot as a slave and TCP/IP based LAN for their Communication. This work includes the motion mapping between the master and the slave, Generation of virtual viscosity force preventing operator s unwilled action and 3D remote control simulators for the stable operation of the remote control system, etc. The remote control implementation has been performed and the results shows that the developed system can allow the operator to effectively control the manipulator.

  • PDF