• Title/Summary/Keyword: 3D printing test method

Search Result 73, Processing Time 0.029 seconds

Exploration of Aluminum Alloy using Multi-feeder 3D Additive Manufacturing-based Combinatorial Experiment (Multi-feeder 3차원 적층제조 기반 조합실험을 활용한 알루미늄 합금탐색)

  • Suwon Park;Yongwook Song;Jiyoon Yeo;Songyun Han;Hyunjoo Choi
    • Journal of Powder Materials
    • /
    • v.30 no.3
    • /
    • pp.255-261
    • /
    • 2023
  • Aluminum alloys are widely utilized in diverse industries, such as automobiles, aerospace, and architecture, owing to their high specific strength and resistance to oxidation. However, to meet the increasing demands of the industry, it is necessary to design new aluminum alloys with excellent properties. Thus, a new method is required to efficiently test additively manufactured aluminum alloys with various compositions within a short period during the alloy design process. In this study, a combinatory approach using a direct energy deposition system for metal 3D printing process with a dual feeder was employed. Two types of aluminum alloy powders, namely Al6061 and Al-12Cu, were utilized for the combinatory test conducted through 3D printing. Twelve types of Al-Si-Cu-Mg alloys were manufactured during this combinatory test, and the relationship between their microstructures and properties was investigated.

Experimental analysis of heat exchanger performance produced by laser 3D printing technique (레이저 3D 프린팅 기법으로 제작한 열교환기 성능시험 분석 연구)

  • Kim, Moosun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.7
    • /
    • pp.270-276
    • /
    • 2020
  • 3D printing is an additive manufacturing technology that can produce complex shapes in a single process for a range of materials, such as polymers, ceramics, and metals. Recent 3D printing technology has developed to a level that enables the mass-production through an improvement of the printing speed and the continuous development of applicable materials. In this study, 3D printing technology using a laser was applied to manufacture a heat exchanger for an air compressor in a railway vehicle. First, the optimal design of the heat exchanger was carried out by focusing on weight reduction and compactness as a shape suitable for 3D printing. Based on the design derived, heat exchanger prototypes were made of AlSi10Mg alloy material by applying the SLM technique. Moreover, the manufactured prototypes were attached to an existing air compressor, and the heat exchange performance of the compressed air was tested. The test results of the 3D printed prototypes showed a heat exchange performance of approximately 80% and 85% at low and high-pressure, respectively, compared to the existing heat exchanger. From the 𝓔-NTU method results with an external cooling air condition similar to that of the existing heat exchanger, the calculated heat transfer amount of 3D printed parts showed similar performance compared to the existing heat exchanger. As a result, the 3D printed heat exchanger is lightweight with good performance.

Characterization of Inkjet-Printed Silver Patterns for Application to Printed Circuit Board (PCB)

  • Shin, Kwon-Yong;Lee, Minsu;Kang, Heuiseok;Kang, Kyungtae;Hwang, Jun Young;Kim, Jung-Mu;Lee, Sang-Ho
    • Journal of Electrical Engineering and Technology
    • /
    • v.8 no.3
    • /
    • pp.603-609
    • /
    • 2013
  • In this paper, we describe the analysis of inkjet-printed silver (Ag) patterns on epoxy-coated substrates according to several reliability evaluation test method guidelines for conventional printed circuit boards (PCB). To prepare patterns for the reliability analysis, various regular test patterns were created by Ag inkjet printing on flame retardant 4 (FR4) and polyimide (PI) substrates coated with epoxy for each test method. We coated the substrates with an epoxy primer layer to control the surface energy during printing of the patterns. The contact angle of the ink to the coated epoxy primer was $69^{\circ}$, and its surface energy was 18.6 $mJ/m^2$. Also, the substrate temperature was set at $70^{\circ}C$. We were able to obtain continuous line patterns by inkjet printing with a droplet spacing of $60{\mu}m$. The reliability evaluation tests included the dielectric withstanding voltage, adhesive strength, thermal shock, pressure cooker, bending, uniformity of line-width and spacing, and high-frequency transmission loss tests.

Evaluation of Marginal and Internal Gap of Temporary Prosthesis Fabricated by 3D Printing Method According to Rinsing Method and Rinsing Time (세척 방법 및 세척 시간에 따른 3D 프린팅 방식으로 제작된 임시 보철물의 변연 및 내면 적합도 평가)

  • Ji-Hyeon Bae;Jae-Won Choi
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.26 no.4_2
    • /
    • pp.561-570
    • /
    • 2023
  • This study was to evaluate the effect of different rinsing times and methods on the accuracy of temporary prostheses fabricated by 3D printing method. Sixty temporary prostheses were fabricated with LCD types of 3D printer(Halot-Sky, Creality, Shenzhen, China) and divided into six groups (n = 10) based on rinsing times and methods. All specimens were rinsed with 99% isopropanol alcohol for 5 and 10 min using three methods-hand washed, ultrasonic cleaning, and automated washing. All specimens were polymerized for 3 minutes under the same conditions. The marginal and internal gaps of specimens were examined using a replica technique. The light-body silicone thickness was measured at 6 reference points(Absolute marginal discrepancy, Marginal, Chamfer, Axial, Angle, and Occlusal gap). All measurements were performed by a stereomicroscope. Reference point images were taken at 100× magnification and then measured using an image analysis program. Statistical analysis was performed using Two-way ANOVA, One-way ANOVA, and the Kruskal-Wallis test (p = .05). The marginal and internal gaps were statistically different according to the rinsing methods and rinsing times(p < .001). In the rinsing time, the temporary prosthesis rinsed for 5 minutes group showed higher accuracy than 10 minutes group. In the rinsing method, the hand washing group showed higher accuracy than the automated washing group.

Estimation of Process Window for the Determination of the Optimal Process Parameters in FDM Process (FDM 3D 프린터 최적 공정 변수 선정을 위한 공정 윈도우 평가법)

  • Ahn, Il-Hyuk
    • Journal of the Korea Convergence Society
    • /
    • v.9 no.8
    • /
    • pp.171-177
    • /
    • 2018
  • In 3D printing technologies, many parameters should be optimized for obtaining a part with higher quality. FDM (fused deposition modeling) printer has also diverse parameters to be optimized. Among them, it can be said that nozzle temperature and moving speed of nozzle are fundamental parameters. Thus, it should be preceded to know the optimal combination of the two parameters in the use of FDM 3D printer. In this paper, a new method is proposed to estimate the range of the stable combinations of the two parameters, based on the single line quality. The proposed method was verified by comparing the results between single line printing and multi-layered single line printing. Based on the comparison, it can be said that the proposed method is very meaningful in that it has a simple test approach and can be easily implemented. In addition, it is very helpful to provide the basic data for the optimization of process parameters.

A Study on Load Cell Development by means of a Nano-Carbon Piezo-resistive Composite and 3D printing (탄소나노튜브 복합소재 전왜 특성과 3D 프린팅을 활용한 로드셀 개발 연구)

  • Kang, Inpil;Joung, Kwan Young;Choi, Beak Gyu;Kim, Sung Yong;Oh, Gwang Won;Kim, Byung Tak;Baek, Woon Kyung
    • Journal of Drive and Control
    • /
    • v.17 no.4
    • /
    • pp.97-102
    • /
    • 2020
  • This paper presents the basic research for the design and fabrication of a 3D-printed load cell made of NCPC (nano-carbon piezo-resistive composite). We designed a structure that can resonate at a low frequency range of about 5-6 Hz with ANSYS using sensitivity analysis and a response surface method. The design was verified by fabricating the device with a low-quality commercial 3D printer and ABS filament. We conducted a feasibility test for a commercial sensor using 1000 cyclic load tests at 0.3 Hz in a material testing system. A manufacturing process for the 3D printer filament based on the NCPC was also developed using the nano-composite process.

Evaluation of Metal Composite Filaments for 3D Printing (3D 프린팅용 금속 입자 필라멘트의 물성 및 차폐 능력 평가)

  • Park, Ki-Seok;Choi, Woo-Jeon;Kim, Dong-Hyun
    • Journal of the Korean Society of Radiology
    • /
    • v.15 no.5
    • /
    • pp.697-704
    • /
    • 2021
  • It is hard to get Filaments which are materials of the 3D printing Fused Deposition Modeling(FDM) method as radiation shielding in Korea. and also related research is insufficient. This study aims to provide basic data for the development of radiation shields using 3D printing by evaluating the physical properties and radiation shielding capabilities of filaments containing metal particles. after selecting five metal filaments containing metal particle reinforcement materials, the radiation shielding rate was calculated according to the Korean Industrial Standard's protective equipment test method to evaluate physical properties such as tensile strength, density, X-ray Diffraction(XRD), and weight measurement using ASTM's evaluation method. In the tensile strength evaluation, PLA + SS was the highest, ABS + W was the lowest, and ABS + W is 3.13 g/cm3 which value was the highest among the composite filaments in the density evaluation. As a result of the XRD, it may be confirmed that the XRD peak pattern of the particles on the surface of the specimen coincides with the pattern of each particle reinforcing material powder metal, and thus it was confirmed that the printed specimen contained powder metal. The shielding effect for each 3D printed composite filament was found to have a high shielding rate in proportion to the effective atomic number and density in the order of ABS + W, ABS + Bi, PLA+SS, PLA + Cu, and PLA + Al. In this study, it was confirmed that the metal particle composite filament containing metal powder as a reinforcing material has radiation shielding ability, and the possibility of using a radiation shielding filament in the future.

Fabrication and Characterization of PZT Suspensions for Stereolithography based on 3D Printing

  • Cha, JaeMin;Lee, Jeong Woo;Bae, Byeonghoon;Lee, Seong-Eui;Yoon, Chang-Bun
    • Journal of the Korean Ceramic Society
    • /
    • v.56 no.4
    • /
    • pp.360-364
    • /
    • 2019
  • PZT suspensions for photo-curable 3D printing were fabricated and their characteristics were evaluated. After mixing the PZT, photopolymer, photo-initiator, and dispersant for 10 min by using a high-shear mixer, the viscosity characteristics were investigated based on the powder content. To determine an appropriate dispersant content, the dispersant was mixed at 1, 3, and 5 wt% of the powder and a precipitation test was conducted for two hours. Consequently, it was confirmed that the dispersibility was excellent at 3 wt%. Through thermogravimetric analysis, it was confirmed that weight reduction occurred in the photopolymer between 120? and 500?, thereby providing a debinding heat treatment profile. The fabricated suspensions were cured using UV light, and the polymer was removed through debinding. Subsequently, the density and surface characteristics were analyzed by using the Archimedes method and field-emission scanning electron microscopy. Consequently, compared with the theoretical density, an excellent characteristic of 97% was shown at a powder content of 87 wt%. Through X-ray diffraction analysis, it was confirmed that the crystallizability improved as the solid content increased. At the mixing ratio of 87 wt% powder and 13 wt% photo-curable resin, the viscosity was 3,100 cps, confirming an appropriate viscosity characteristic as a stereolithography suspension for 3D printing.

A Surface Treatment Technique for Interim Crown Fabricated by Three-Dimensional Printing with Digital Light-Processing Technology

  • Son, Keunbada;Lee, Jaesik;Lee, Kyu-Bok
    • Journal of Korean Dental Science
    • /
    • v.14 no.2
    • /
    • pp.79-89
    • /
    • 2021
  • Purpose: The technique introduced in this study describes a technique for surface treatment that applies a photocuring resin to the surface of an interim crown fabricated by three-dimensional (3D) printing without a conventional polishing method. The purpose of this study was to evaluate marginal and internal fit and the intaglio surface trueness of interim crowns after surface treatment of 3D-printed crowns for clinical application. Materials and Methods: An interim crown was fabricated using a 3D printer with digital light-processing technology, and the surface support was removed. After the posttreatment process, the resin was thinly applied to the surface of the interim crown and polymerized to solve the esthetic problem of the surface without the conventional polishing process. In addition, the marginal and internal fits were measured to verify the clinical use of this technique, and the trueness was evaluated to confirm the deformation of the inner surface according to the technical application of the outer surface of the interim crown. The difference before and after the evaluation by a statistical method was verified using an independent t-test (α=0.05). Result: There was no significant difference in the marginal and internal fit before and after the application of this technique (P>0.05). There was no significant difference in intaglio surface trueness before and after the application of this technique (P=0.963). Conclusion: There was no change in the marginal and internal fit or in intaglio surface trueness of the interim crowns to which this technology was applied. This surface treatment technique is a more convenient method for interim crowns fabricated using 3D-printing technology without the conventional polishing process.

GF/PC Composite Filament Design & Optimization of 3D Printing Process and Structure for Manufacturing 3D Printed Electric Vehicle Battery Module Cover (전기자동차 배터리 모듈 커버의 3D 프린팅 제작을 위한 GF/PC 복합소재 필라멘트 설계와 3D 프린팅 공정 및 구조 최적화)

  • Yoo, Jeong-Wook;Lee, Jin-Woo;Kim, Seung-Hyun;Kim, Youn-Chul;Suhr, Jong-Hwan
    • Composites Research
    • /
    • v.34 no.4
    • /
    • pp.241-248
    • /
    • 2021
  • As the electric vehicle market grows, there is an issue of light weight vehicles to increase battery efficiency. Therefore, it is going to replace the battery module cover that protects the battery module of electric vehicles with high strength/high heat-resistant polymer composite material which has lighter weight from existing aluminum materials. It also aims to respond to the early electric vehicle market where technology changes quickly by combining 3D printing technology that is advantageous for small production of multiple varieties without restrictions on complex shapes. Based on the composite material mechanics, the critical length of glass fibers in short glass fiber (GF)/polycarbonate (PC) composite materials manufactured through extruder was derived as 453.87 ㎛, and the side feeding method was adopted to improve the residual fiber length from 365.87 ㎛ and to increase a dispersibility. Thus, the optimal properties of tensile strength 135 MPa and Young's modulus 7.8 MPa were implemented as GF/PC composite materials containing 30 wt% of GF. In addition, the filament extrusion conditions (temperature, extrusion speed) were optimized to meet the commercial filament specification of 1.75 mm thickness and 0.05 mm standard deviation. Through manufactured filaments, 3D printing process conditions (temperature, printing speed) were optimized by multi-optimization that minimize porosity, maximize tensile strength, and printing speed to increase the productivity. Through this procedure, tensile strength and elastic modulus were improved 11%, 56% respectively. Also, by post-processing, tensile strength and Young's modulus were improved 5%, 18% respectively. Lastly, using the FEA (finite element analysis) technique, the structure of the battery module cover was optimized to meet the mechanical shock test criteria of the electric vehicle battery module cover (ISO-12405), and it is satisfied the battery cover mechanical shock test while achieving 37% lighter weight compared to aluminum battery module cover. Based on this research, it is expected that 3D printing technology of polymer composite materials can be used in various fields in the future.