• 제목/요약/키워드: 3D printing system

Search Result 247, Processing Time 0.036 seconds

Investigation on the Development of 3D Concrete Printing(3DPC) Technology Using Coarse Aggregation (굵은 골재를 이용한 3D 콘크리트 프린팅 기술개발에 대한 연구)

  • Hwang, Jun Pil;Kwon, Hong-Kyu
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.45 no.3
    • /
    • pp.66-77
    • /
    • 2022
  • Digitization and automation technologies have rapidly maximized productivity and efficiency in all industries over the past few decades. Construction automation technology has either stagnated over the same period or has not kept pace with overall economic productivity. According to the research studies up to now, the output of concrete structures using coarse aggregates (8mm or more) is very limited due to the limitations of equipment and materials. In this study, information on the development process of 3DCP equipment that can print concrete structures with the printing width (100 mm or more) and printing thickness (30 mm or more) using a 3DCP material mixed with coarse aggregate (8 mm or more) is provided. To verify the performance of the developed 3DCP equipment, experimental data are provided on output variables, the number of layers, and the inter-layer printing time interval. The evaluation and verification data of various mechanical properties (compressive and splitting tensile strength) of printed materials using coarse aggregates are provided.

Three Dimensional Layering Algorithm for 3-D Metal Printing Using 5-axis (3 차원 금속 프린팅을 위한 다중 3 차원 적층 알고리듬(3DL))

  • Ryu, Sua;Jee, Haeseong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.8
    • /
    • pp.881-886
    • /
    • 2014
  • The purpose of three-dimensional (3-D) metal printing using 5-axis is to deposit metal powder by changing the orientation of the deposited structure to be built for the overhang or undercut feature on part geometry. This requires a complicated preprocess functionality of providing three dimensionally sliced layers to cover the required part geometry. This study addresses the overhang/undercut problem in 3-D metal printing and discusses a possible solution of providing 3-D layers to be built using the DMT(R) machine.

Hybrid 3D Printing and Casting Manufacturing Process for Fabrication of Smart Soft Composite Actuators (지능형 연성 복합재 구동기 제작을 위한 3D 프린팅-캐스팅 복합 공정)

  • Kim, Min-Soo;Song, Sung-Hyuk;Kim, Hyung-Il;Ahn, Sung-Hoon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.33 no.1
    • /
    • pp.77-83
    • /
    • 2016
  • Intricate deflection requires many conventional actuators (motors, pistons etc.), which can be financially and spatially wasteful. Novel smart soft composite (SSC) actuators have been suggested, but fabrication complexity restricts their widespread use as general-purpose actuators. In this study, a hybrid manufacturing process comprising 3-D printing and casting was developed for automated fabrication of SSC actuators with $200{\mu}m$ precision, using a 3-D printer (3DISON, ROKIT), a simple polymer mixer, and a compressor controller. A method to improve precision is suggested, and the design compensates for deposition and backlash errors (maximum, $170{\mu}m$). A suitable flow rate and tool path are suggested for the polymer casting process. The equipment and process costs proposed here are lower than those of existing 3D printers for a multi-material deposition system and the technique has $200{\mu}m$ precision, which is suitable for fabrication of SSC actuators.

Formative Characteristics of Women's Shoes Design Utilizing 3D Printing Technology (3D 프린팅 기술이 접목된 여성 슈즈 디자인의 조형적 특성)

  • Kim, Young-Sam;Jun, Yuh-Sun;Park, keun-Jung;Kim, Jang-Hyeon
    • Journal of the Korean Society of Costume
    • /
    • v.66 no.8
    • /
    • pp.14-32
    • /
    • 2016
  • This study examines the morphological expression type and formative characteristics of women's shoes designs that integrate 3D printing technology. The results of the study are as follows. First, the morphological expression types of contemporary shoes that integrate 3D printing technology express a structural form created by repetition. Second, it expresses a dynamic form, which combines organic curves that create an external volume. Third, it expresses a surrealistic form centered on an object with the creation of a unique shape that utilizes objects easily experienced in local surroundings. Fourth, it expresses a hybrid form on a partial derivation. Each of the other system's components are fused to create another beauty that develops a new value in a colorful variation on the shape of 3D printing shoes. The first formative characteristic of women's shoes designs that integrate 3D printing technology is continuity. This creates an invisible form of a new space through repetitive unidirectional layers with a gradual expansion of a unitary seamless curves. Second, it is an exaggeration. This exaggeration elicits an enormous aesthetic quality by structuring the outward space in the difference of the volume formed based on the maximization of a specific part and the volume of a line's atypical movement. Third, it is a decoration. It displays the beauty of a decoration that evokes a unique artistic inspiration by partial unification or a practical representation of a specific form. This can also be seen as superimposing a 3D printing figure that has an outstanding shape onto part of the fashion shoes. Fourth, it concerns a geometrical characteristic that formulates a new structure with rationality in combining basic shapes such as circles, triangles and squares with lines, hexagons and interconnected geometrical forms to create a multi-dimensional space for shoes in a systematic and unidirectional pattern.

Fabrication of Tissue Engineered Intervertebral Disc Using Enable 3D bio-printing and Scaffod-Free technologies (3D 바이오프린팅과 무지지체 조직공학 기술 기반 추간판 복합 조직 제작)

  • Kim, Byeong Kook;Park, Jinho;Park, Sang-Hyug
    • Journal of Biomedical Engineering Research
    • /
    • v.39 no.1
    • /
    • pp.22-29
    • /
    • 2018
  • Intervertebral disc(IVD) mainly consists of Annulus fibrosus(AF) and Nucleus pulposus(NP), playing a role of distributing a mechanical load on vertebral body. IVD tissue engineering has been developed the methods to achieve anatomic morphology and restoration of biological function. The goal of present study is to identify the possibilities for creating a substitute of IVD the morphology and biological functions are the same as undamaged complete IVD. To fabricate the AF and NP combine biphasic IVD tissue, AF tissue scaffolds have been printed by 3D bio-printing system with natural biomaterials and NP tissues have been prepared by scaffold-free culture system. We evaluated whether the combined structure of 3D printed AF scaffold and scaffold-free NP tissue construct could support the architecture and cell functions as IVD tissue. 3D printed AF scaffolds were printed with 60 degree angle stripe patterned lamella structure(the inner-diameter is 5mm, outer-diameter is 10 mm and height is 3 mm). In the cytotoxicity test, the 3D printed AF scaffold showed good cell compatibility. The results of histological and immunohistochemical staining also showed the newly synthesized collagens and glycosaminoglycans, which are specific makers of AF tissue. And scaffold-free NP tissue actively synthesized glycosaminoglycans and type 2 collagen, which are the major components of NP tissue. When we combined two engineered tissues to realize the IVD, combined biphasic tissues showed a good integration between the two tissues. In conclusion, this study describes the fabrication of Engineered biphasic IVD tissue by using enable techniques of tissue engineering. This fabricated biphasic tissue would be used as a model system for the study of the native IVD tissue. In the future, it may have the potential to replace the damaged IVD in the future.

Customized Model Manufacturing for Patients with Pelvic Fracture using FDM 3D Printer (FDM 방식의 3D 프린터를 이용한 골반 골절 환자의 맞춤형 모델제작)

  • Oh, Wang-Kyun
    • The Journal of the Korea Contents Association
    • /
    • v.14 no.11
    • /
    • pp.370-377
    • /
    • 2014
  • At present trend 3D Printing technology has been using more efficiently than conventional subtractive manufacturing method in various medical fields, in particular this technology superior in saving production time, cost and process than conventional. Especially in orthopedics, an attractive attention has been paid by adopting this technology because of improving operation, operation accuracy, and reducing the patient's pain. Though 3D printing technology has enormous applications still in some hospitals have not been using due to having the problem of technical utilization of hardware, software & chiefly financial availability and etc. In order to solve these problems by reducing the cost and time, we have used CT images in pre-operative planning by directly making the pelvic fracture model with open source DICOM viewer and STL file conversion program, assembly 3D printer of FDM wire additive manufacturing. After having the customized bone model of six patients who underwent unstable pelvic fracture surgery, we have operated our system in orthopedic section of University Hospital through the clinician. Later, we have received better reviews and comments on utilization availability, results, and precision and now our system considered to be useful in surgical planning.

Prosthetic rehabilitation for a maxillectomy patient using 3D printing assisted closed hollow bulb obturator: a case report (상악골 결손부 환자에서 3D printing을 이용한 closed hollow bulb obturator 수복 증례)

  • Oh, Miju;Lee, Jonghyuk;Song, Young-Gyun
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.35 no.3
    • /
    • pp.191-198
    • /
    • 2019
  • This case report presents a closed hollow bulb obturator made by 3D printing for a maxillectomy patient. Final impression was taken according to the instructions and impression trays provided by the Magic $denture^{TM}$ system. Vertical dimension, facial appearance, and retention had been checked with the try-in denture. The try-in denture was corrected and adjusted to fulfill the demand of the patients, then these were reflected to the final design of the denture. The defect area was designed as a closed hollow bulb shape to reduce the weight and to provide uniform thickness of the denture. The patient satisfied with the esthetics and function of the denture.

A Study on the Development of a Novel Pressure Sensor based on Nano Carbon Piezoresistive Composite by Using 3D Printing (3D 프린팅을 활용한 탄소 나노 튜브 전왜성 복합소재 기반 압력 센서 개발 연구)

  • Kim, Sung Yong;Kang, Inpil
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.41 no.3
    • /
    • pp.187-192
    • /
    • 2017
  • This paper presents an ongoing study to develop a novel pressure sensor by means of a Nano Carbon Piezoresistive Composite (NCPC). The sensor was fabricated using the 3D printing process. We designed a miniaturized cantilever-type sensor electrode to improve the pressure sensing performance and utilized a 3D printer to build a small-sized body. The sensor electrode was made of 2 wt% MWCNT/epoxy piezoresistive nano-composite, and the sensor body was encapsulated with a pipe plug cap for easy installation to any pressure system. The piezoresistivity responses of the sensor were converted into stable voltage outputs by using a signal processing system, which is similar to a conventional foil strain gauge. We evaluated the pressure-sensing performances using a pressure calibrator in the lab environment. The 3D-printed cantilever electrode pressure sensor showed linear voltage outputs of up to 16,500 KPa, which is a 200% improvement in the pressure sensing range when compared with the bulk-type electrode used in our previous work.

Fabrication of Ceramic 3D Integration Technology for Ink-jet Printing (Ink-jet Printing을 이용한 3D-Integration 구현)

  • Hwang, Myung-Sung;Kim, Ji-Hoon;Kim, Hyo-Tae;Yoon, Young-Joon;Kim, Jong-Hee;Moon, Joo-Ho
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.06a
    • /
    • pp.332-332
    • /
    • 2010
  • We have successfully demonstrated the inkjet printing method to create $Al_2O_3$ films withouWe have successfully demonstrated the inkjet printing method to create $Al_2O_3$ films without a high temperature sintering process. In order to remove the coffee ring effect in the ink drop, we have introduced a co-solvent system in order to create Marangoni flow in the ink drop, which leads to the dense packing of ceramic powders on the substrate during inkjet process. The packing density of the Inkjet-printed $Al_2O_3$ films is around 60% (max. 70%) which is very high compared to the value obtained from the same material films by other conventional methods such as film casting, dip coating process, etc. The voids inside the films (which are around 40% of the entire film volume) are filled with the polymer resin (Cyanate ester) by the infiltration process. This resin infiltration is also implemented by the inkjet printing process right after the Ah03 film ink-jetting process. The microstructures of the printed $Al_2O_3$ films are investigated by Scanning Electron Microscope (SEM) to understand the degree of packing density in the printed films. The inkjet-printed $Al_2O_3$ films have been characterized to investigate its thickness and roughness. Quality factor of the printed $Al_2O_3$ film is also measured to be over 300 at 1MHz.

  • PDF

The effect of 4,4'-bis(N,N-diethylamino)benzophenone on the degree of conversion in liquid photopolymer for dental 3D printing

  • Lee, Du-Hyeong;Mai, Hang Nga;Yang, Jin-Chul;Kwon, Tae-Yub
    • The Journal of Advanced Prosthodontics
    • /
    • v.7 no.5
    • /
    • pp.386-391
    • /
    • 2015
  • PURPOSE. The purpose of this preliminary study was to investigate the effects of adding 4,4'-bis(N,N-diethylamino) benzophenone (DEABP) as a co-initiator to a binary photoinitiating system (camphorquinone-amine) to analyze on the degree of conversion (DC) of a light-cured resin for dental 3D printing. MATERIALS AND METHODS. Cylindrical specimens (N=60, n=30 per group, ${\phi}5mm{\times}1mm$) were fabricated using bisphenol A glycerolate dimethacrylate (BisGMA) both with and without DEABP. The freshly mixed resins were exposed to light in a custom-made closed chamber with nine light-emitting diode lamps (wavelength: 405 nm; power: $840mW/cm^2$) for polymerization at each incidence of light-irradiation at 10, 30, 60, 180, and 300 seconds, while five specimens at a time were evaluated at each given irradiation point. Fourier-transform infrared (FTIR) spectroscopy was used to measure the DC values of the resins. Two-way analysis of variance and the Duncan post hoc test were used to analyze statistically significant differences between the groups and given times (${\alpha}$=.05). RESULTS. In the DEABP-containing resin, the DC values were significantly higher at all points in time (P<.001), and also the initial polymerization velocity was faster than in the DEABP-free resin. CONCLUSION. The addition of DEABP significantly enhanced the DC values and, thus, could potentially become an efficient photoinitiator when combined with a camphorquinone-amine system and may be utilized as a more advanced photopolymerization system for dental 3D printing.