• Title/Summary/Keyword: 3D printing surgical guide

Search Result 13, Processing Time 0.025 seconds

Corrective Surgery Using Virtual Surgical Simulation and a Three-Dimensional Printed Osteotomy Guide: A Case Report (가상 수술 시뮬레이션과 3차원 프린팅 절골술 가이드를 이용한 교정 수술: 증례 보고)

  • Gi Won Choi;Gi Jun Shin
    • Journal of Korean Foot and Ankle Society
    • /
    • v.27 no.3
    • /
    • pp.112-116
    • /
    • 2023
  • A 74-year-old female patient, who underwent surgery for a left distal tibiofibular fracture 40 years earlier, visited the hospital with an ankle varus deformity due to malunion. The patient complained of discomfort while walking due to the ankle and hindfoot varus deformity but did not complain of ankle pain. Therefore, correction using supramalleolar osteotomy was planned, and through virtual surgical simulation, it was predicted that a correction angle of 24° and an osteotomy gap open of 12 mm would be necessary. An osteotomy guide and an osteotomy gap block were made using three-dimensional (3D) printing to perform the osteotomy and correct the deformity according to the predicted goal. One year after surgery, it was observed that the ankle varus was corrected according to the surgical simulation, and the patient was able to walk comfortably. Thus, for correction of deformity, virtual surgical simulation and a 3D-printed osteotomy guide can be used to predict the target value for correction. This is useful for increasing the accuracy of correction of the deformity.

Three Dimensional Printing Technique and Its Application to Bone Tumor Surgery (3차원 프린팅 기술과 이를 활용한 골종양 수술)

  • Kang, Hyun Guy;Park, Jong Woong;Park, Dae Woo
    • Journal of the Korean Orthopaedic Association
    • /
    • v.53 no.6
    • /
    • pp.466-477
    • /
    • 2018
  • Orthopaedics is an area where 3-dimensional (3D) printing technology is most likely to be utilized because it has been used to treat a range of diseases of the whole body. For arthritis, spinal diseases, trauma, deformities, and tumors, 3D printing can be used in the form of anatomical models, surgical guides, metal implants, bio-ceramic body reconstruction, and orthosis. In particular, in orthopaedic oncology, patients have a wide variety of tumor locations, but limited options for the limb salvage surgery have resulted in many complications. Currently, 3D printing personalized implants can be fabricated easily in a short time, and it is anticipated that all bone tumors in various surgical sites will be reconstructed properly. An improvement of 3D printing technology in the healthcare field requires close cooperation with many professionals in the design, printing, and validation processes. The government, which has determined that it can promote the development of 3D printing-related industries in other fields by leading the use of 3D printing in the medical field, is also actively supporting with an emphasis on promotion rather than regulation. In this review, the experience of using 3D printing technology for bone tumor surgery was shared, expecting orthopaedic surgeons to lead 3D printing in the medical field.

Full mouth rehabilitation of a patient with severe periodontitis using immediate loading after computer aided flapless implant surgery (심한 치주질환을 가진 환자에서 computer aided flapless surgery와 즉시 부하를 통한 전악 구강 회복 증례)

  • Kang, Seong hun;Choi, Yeon jo;Ryu, Jae jun
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.34 no.1
    • /
    • pp.46-55
    • /
    • 2018
  • Oral rehabilitation of a patient having severe periodontitis with alveolar bone resorption and periodontal inflammation presents a challenge to clinicians. However, if appropriate implant placement according to the bone shape is selected, unnecessary bone grafting or soft tissue surgery can be minimized. In recent years, using cone beam CT and software, it has become possible to operate the planned position with the surgical guide made with 3D printing technology. This case was a 70 years old female patient who required total extraction of teeth due to severe periodontitis and performed a full-mouth rehabilitation with an implant - supported fixed prosthesis. During the surgery, the implant was placed in a flapless manner through a surgical guide. Immediate loading of the temporary prosthesis made by CAD/CAM method before surgery was done. Since then, we have produced customized abutments and zirconia prostheses, and have reported satisfactory aesthetic and functional recovery.

Contemporary Approach to Autotransplantation of Teeth with Complete Roots Using 3D-printing Technology (3D 프린팅 기술을 이용한 치근단 완성 치아의 자가이식에 대한 최신 접근)

  • Park, Jungha;Lee, Sangho;Lee, Nanyoung;Jih, Myoungkwan;Cheong, Hyeran
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.44 no.4
    • /
    • pp.461-468
    • /
    • 2017
  • Autotransplantation of teeth with complete roots is being increasingly performed for orthodontic treatment or for replacement of unsalvageable teeth, but this procedure has lower survival and success rates than those obtained following transplantation of teeth with incomplete root formation. While previous autotransplantation procedures used only models of the donor tooth and recipient site, surgical guide templates created using 3D-printing technology are now available. They allow shaping of the recipient site in proper direction and to the correct depth, thereby reducing the treatment time and improving the success and survival rates. Herein, we report a case involving autotransplantation of a tooth with complete roots at the site of a congenitally missing permanent tooth using surgical guide templates generated with 3D-printing technology. The procedure resulted in favorable healing of the transplanted tooth.

Cranioplasty for Multilobular Osteochondrosarcoma Using 3-Dimensional Printing Technology in Dogs: A Report of Two Cases with a Long-Term Follow-Up

  • Heo, Seong-Hyeon;Lee, Hae-Beom;Jeong, Jae-Min;Jeon, Young-Jin;Kim, Dae-Hyun;Jeong, Seong-Mok;Roh, Yoon-Ho
    • Journal of Veterinary Clinics
    • /
    • v.39 no.5
    • /
    • pp.246-252
    • /
    • 2022
  • Multilobular osteochondrosarcoma (MLO) reportedly has a good prognosis after complete resection. This study reports the successful treatment of MLO in two dogs using 3-dimensional (3D) printing technology. A nine-year-old castrated male Maltese (Case 1) and a five-year-old castrated male poodle (Case 2) both presented with a mass in the skull. Diagnostic imaging revealed a cranial mass arising from the cranio-orbital and parieto-occipital bones. The masses were resected using 3D-printed osteotomy guides, and the resulting defects were reconstructed using 3D-printed patient-specific implants. Histopathological results confirmed the resection of MLOs with clean margins. Patients routinely recover from surgery without complications. To date, the two patients remain alive without clinical signs of tumor recurrence at 20 and 12 months postoperatively, respectively. In the management of MLO in dogs, 3D printing technology can allow accurate tumor resection, reduced surgical time, and successful reconstruction of large defects.

The accuracy of a 3D printing surgical guide determined by CBCT and model analysis

  • Ma, Boyoung;Park, Taeseok;Chun, Inkon;Yun, Kwidug
    • The Journal of Advanced Prosthodontics
    • /
    • v.10 no.4
    • /
    • pp.279-285
    • /
    • 2018
  • PURPOSE. The aim of this clinical study was to assess the accuracy of the implants placed using a universal digital surgical guide. MATERIALS AND METHODS. Among 17 patients, 28 posterior implants were included in this study. The digital image of the soft tissue acquired from cast scan and hard tissue from CBCT have been superimposed and planned the location, length, diameter of the implant fixture. Then digital surgical guides were created using 3D printer. Each of angle deviations, coronal, apical, depth deviations of planned and actually placed implants were calculated using CBCT scans and casts. To compare implant positioning errors by CBCT scans and plaster casts, data were analyzed with independent samples t-test. RESULTS. The results of the implant positioning errors calculated by CBCT and casts were as follows. The means for CBCT analyses were: angle deviation: $4.74{\pm}2.06^{\circ}$, coronal deviation: $1.37{\pm}0.80mm$, and apical deviation: $1.77{\pm}0.86mm$. The means for cast analyses were: angle deviation: $2.43{\pm}1.13^{\circ}$, coronal deviation: $0.82{\pm}0.44mm$, apical deviation: $1.19{\pm}0.46mm$, and depth deviation: $0.03{\pm}0.65mm$. There were statistically significant differences between the deviations of CBCT scans and cast. CONCLUSION. The model analysis showed lower deviation value comparing the CBCT analysis. The angle and length deviation value of the universal digital guide stent were accepted clinically.

Mandible Reconstruction with 3D Virtual Planning

  • Woo, Taeyong;Kraeima, Joep;Kim, Yong Oock;Kim, Young Seok;Roh, Tai Suk;Lew, Dae Hyun;Yun, In Sik
    • Journal of International Society for Simulation Surgery
    • /
    • v.2 no.2
    • /
    • pp.90-93
    • /
    • 2015
  • The fibula free flap has now become the most reliable and frequently used option for mandible reconstruction. Recently, three dimensional images and printing technologies are applied to mandibular reconstruction. We introduce our recent experience of mandibular reconstruction using three dimensionally planned fibula free flap in a patient with gunshot injury. The defect was virtually reconstructed with three-dimensional image. Because bone fragments are dislocated from original position, relocation was necessary. Fragments are virtually relocated to original position using mirror image of unaffected right side of the mandible. A medical rapid prototyping (MRP) model and cutting guide was made with 3D printer. Titanium reconstruction plate was adapted to the MRP model manually. 7 cm-sized fibula bone flap was designed on left lower leg. After dissection, proximal and distal margin of fibula flap was osteotomized by using three dimensional cutting guide. Segmentation was also done as planned. The fibula bone flap was attached to the inner side of the prebent reconstruction plate and fixed with screws. Postoperative evaluation was done by comparison between preoperative planning and surgical outcome. Although dislocated condyle is still not in ideal position, we can see that reconstruction was done as planned.

A simplified CAD/CAM extraoral surgical guide for therapeutic injections

  • Cameron, Andrew;Custodio, Antonio Luis Neto;Bakr, Mahmoud;Reher, Peter
    • Journal of Dental Anesthesia and Pain Medicine
    • /
    • v.21 no.3
    • /
    • pp.253-260
    • /
    • 2021
  • Therapeutic injections into the craniofacial region can be a complex procedure because of the nature of its anatomical structure. This technical note demonstrates a process for creating an extra-oral template to inject therapeutic substances into the temporomandibular joint and the lateral pterygoid muscle. The described process involves merging cone-beam computed tomography data and extra-oral facial scans obtained using a mobile device to establish a correlated data set for virtual planning. Virtual injection points were simulated using existing dental implant planning software to assist clinicians in precisely targeting specific anatomical structures. A template was designed and then 3D printed. The printed template showed adequate surface fit. This innovative process demonstrates a potential new clinical technique. However, further validation and in vivo trials are necessary to assess its full potential.

Virtual Surgical Planning System for Mandible Reconstruction (하악골 재건을 위한 가상수술계획 시스템)

  • Kim, Hannah;Kim, Youngjun;Cho, Hyunchul;Shim, Eung June;Lee, Deukhee;Kim, Laehyun;Park, Sehyung;Lee, Jung-Woo
    • Korean Journal of Computational Design and Engineering
    • /
    • v.21 no.2
    • /
    • pp.196-203
    • /
    • 2016
  • In this paper, we propose a virtual surgical planning system specialized to mandible reconstruction surgery. Mandible reconstruction surgery is one of the most difficult surgeries, even for experienced surgeons. Compared to the traditional surgical procedures, virtual surgical planning can reduce the operation time in operating room while expecting better surgical outcome with optimized planning. However, with existing software systems, it requires much time and manual operations in virtual surgical planning. To reduce preparation time and improve accuracy of virtual surgical planning, we have developed optimized functions for virtual surgical simulation of mandible reconstruction with user-friendly interface. We found that the proposed system shortened the preparation time by half compared to the existing system from the experiments. The proposed system supports surgeons to make accurate plan faster and easier. The virtually planned results are used to make surgical cutting guide by 3D printing, and this will enhance surgical performance in operating room.

The utility of three-dimensional models in complex microsurgical reconstruction

  • Ogunleye, Adeyemi A.;Deptula, Peter L.;Inchauste, Suzie M.;Zelones, Justin T.;Walters, Shannon;Gifford, Kyle;LeCastillo, Chris;Napel, Sandy;Fleischmann, Dominik;Nguyen, Dung H.
    • Archives of Plastic Surgery
    • /
    • v.47 no.5
    • /
    • pp.428-434
    • /
    • 2020
  • Background Three-dimensional (3D) model printing improves visualization of anatomical structures in space compared to two-dimensional (2D) data and creates an exact model of the surgical site that can be used for reference during surgery. There is limited evidence on the effects of using 3D models in microsurgical reconstruction on improving clinical outcomes. Methods A retrospective review of patients undergoing reconstructive breast microsurgery procedures from 2017 to 2019 who received computed tomography angiography (CTA) scans only or with 3D models for preoperative surgical planning were performed. Preoperative decision-making to undergo a deep inferior epigastric perforator (DIEP) versus muscle-sparing transverse rectus abdominis myocutaneous (MS-TRAM) flap, as well as whether the decision changed during flap harvest and postoperative complications were tracked based on the preoperative imaging used. In addition, we describe three example cases showing direct application of 3D mold as an accurate model to guide intraoperative dissection in complex microsurgical reconstruction. Results Fifty-eight abdominal-based breast free-flaps performed using conventional CTA were compared with a matched cohort of 58 breast free-flaps performed with 3D model print. There was no flap loss in either group. There was a significant reduction in flap harvest time with use of 3D model (CTA vs. 3D, 117.7±14.2 minutes vs. 109.8±11.6 minutes; P=0.001). In addition, there was no change in preoperative decision on type of flap harvested in all cases in 3D print group (0%), compared with 24.1% change in conventional CTA group. Conclusions Use of 3D print model improves accuracy of preoperative planning and reduces flap harvest time with similar postoperative complications in complex microsurgical reconstruction.