• Title/Summary/Keyword: 3D planning

Search Result 1,226, Processing Time 0.026 seconds

Analysis of Secondary Battery Trends Using Topic Modeling: Focusing on Solid-State Batteries

  • Chunghyun Do;Yong Jin Kim
    • Asian Journal of Innovation and Policy
    • /
    • v.12 no.3
    • /
    • pp.345-362
    • /
    • 2023
  • As the widespread adoption and proliferation of electric vehicles continue, the secondary battery market is experiencing rapid growth. However, lithium-ion batteries, which constitute a majority of secondary batteries, present high risks of fire and explosion. Solid-state batteries are thus garnering attention as the next-generation batteries since they eliminate fire hazards and significantly reduce the risk of explosions. Against this background, the study aimed to analyze research trends and provide insights by examining 2,927 domestic papers related to solid-state batteries over the past decade (2013-2022). Specifically, we used topic modeling to extract major keywords associated with solid-state batteries research and to explore the network characteristics across major topics. The changes in research on solid-state batteries were analyzed in-depth by calculating topic dominance by year. The findings provide an overview of the emerging trends in domestic solid-state battery research, and might serve as a valuable reference in shaping long-term research directions.

Automated 2D/3D Image Matching Technique with Dual X-ray Images for Estimation of 3D In Vivo Knee Kinematics

  • Kim, Yoon-Hyuk;Phong, Le Dinh;Kim, Kyung-Soo;Kim, Tae-Seong
    • Journal of Biomedical Engineering Research
    • /
    • v.29 no.6
    • /
    • pp.431-435
    • /
    • 2008
  • Quantitative information of a three dimensional(3D) kinematics of joint is very useful in knee joint surgery, understanding how knee kinematics related to joint injury, impairment, surgical treatment, and rehabilitation. In this paper, an automated 2D/3D image matching technique was developed to estimate the 3D in vivo knee kinematics using dual X-ray images. First, a 3D geometric model of the knee was reconstructed from CT scan data. The 3D in vivo position and orientation of femoral and tibial components of the knee joint could be estimated by minimizing the pixel by pixel difference between the projection images from the developed 3D model and the given X-ray images. The accuracy of the developed technique was validated by an experiment with a cubic phantom. The present 2D/3D image matching technique for the estimation of in vivo joint kinematics could be useful for pre-operative planning as well as post-operative evaluation of knee surgery.

An Expert System for the Process Planning of the Elliptical Deep Drawing Transfer Die (타원형 디프 드로잉 트랜스퍼 금형의 공정설계 전문가 시스템(I))

  • 박동환;박상봉;강성수
    • Korean Journal of Computational Design and Engineering
    • /
    • v.5 no.3
    • /
    • pp.255-262
    • /
    • 2000
  • A computer-aided process planning (CAPP) system for rotationally symmetric deep drawing products has been developed. The application for non-axisymmetric components, however, has not been reported yet. Therefore, this study investigates process sequence design in deep drawing process and constructs an expert system of process planning for non-axisymmetric motor frame products with elliptical shape. The system developed consists of four modules. The first one is recognition of shape module to recognize the products. The second one is a 3-D modeling module to calculate surface area for non-axisymmetric products. The third one is a blank design module that creates an oval-shaped blank with the identical surface area. The forth one is a process planning module based on production rules that play the best important role in an expert system for manufacturing. The production rules are generated and upgraded by interviewing with field engineers. The constructed system using AutoLISP language under the AutoCAD environment is baled on the knowledge base system which is involved a lot of expert's technology. Results of this system will be provide effective aids to the designer and engineer in this field.

  • PDF

TASK PLANNING AND VISUALIZATION SYSTEM FOR INTELLIGENT EXCAVATING SYSTEM

  • Jeong-Hwan Kim;Seung-Soo Lee;Jin-Woong Park;Ji-Hyeok Yoon;Jong-Won Seo
    • International conference on construction engineering and project management
    • /
    • 2009.05a
    • /
    • pp.457-463
    • /
    • 2009
  • The earthwork is essential procedure for all civil engineering projects. Because of its importance in terms of cost and time, it should be managed effectively. In light of this, The Intelligent Excavating System (IES) research consortium has established to improve the productivity, quality and safety of current excavating/earthwork system by the Ministry of Land, Transportation and Maritime Affairs (MLTM) of Korea. This paper summarizes ongoing research aimed at development knowledge and presents a framework of task planning and visualization system for IES. The task planning and visualization system consists of three functions. 1) Using digital terrain model which created by 3D laser scanner, the system can divide it and generates global/local work area so that the excavator can work through the area. 2) In order to operate and/or control the excavator, the system exports the location, paths of boom, arm and bucket data of the excavator to control center. 3) The task planning system is visualized on the computer programming aided-graphic interface which simulates the planned work processes and eventually assists the operator for the control of the excavator. The case study which we have performed, demonstrates the effectiveness of the proposed system.

  • PDF

Fast Motion Planning of Wheel-legged Robot for Crossing 3D Obstacles using Deep Reinforcement Learning (심층 강화학습을 이용한 휠-다리 로봇의 3차원 장애물극복 고속 모션 계획 방법)

  • Soonkyu Jeong;Mooncheol Won
    • The Journal of Korea Robotics Society
    • /
    • v.18 no.2
    • /
    • pp.143-154
    • /
    • 2023
  • In this study, a fast motion planning method for the swing motion of a 6x6 wheel-legged robot to traverse large obstacles and gaps is proposed. The motion planning method presented in the previous paper, which was based on trajectory optimization, took up to tens of seconds and was limited to two-dimensional, structured vertical obstacles and trenches. A deep neural network based on one-dimensional Convolutional Neural Network (CNN) is introduced to generate keyframes, which are then used to represent smooth reference commands for the six leg angles along the robot's path. The network is initially trained using the behavioral cloning method with a dataset gathered from previous simulation results of the trajectory optimization. Its performance is then improved through reinforcement learning, using a one-step REINFORCE algorithm. The trained model has increased the speed of motion planning by up to 820 times and improved the success rates of obstacle crossing under harsh conditions, such as low friction and high roughness.

Methodological Improvement for the Economic Assessment of Public R&D Programs

  • Hwang, Seogwon
    • STI Policy Review
    • /
    • v.2 no.3
    • /
    • pp.35-44
    • /
    • 2011
  • Korea has rapidly increased R&D investment over the last few decades and the intensity of R&D investment is among the highest in the world; however, there are serious concerns about R&D performance and R&D efficiency. This study is to improve the economic assessment methodology regarding a feasibility study for national R&D programs that are thought to be one of the most prominent ways to enhance R&D efficiency. In order to improve the methodology of economic assessment, a few of important factors such as technical or market uncertainty, spillover effect, and R&D contribution ratio should be covered in the model. The focus of this article is technological and market uncertainty that has a close relation with strategic flexibility and utilization potential to increase the value of R&D programs. To improve the current linear and definitive R&D process, a new framework with strategic flexibility is suggested, in which the result of economic assessment that considers technological and market uncertainty is reflected in planning. That kind of feedback process is expected to enhance the value of the program/project as well as R&D efficiency.

Accurate Registration Method of 3D Facial Scan Data and CBCT Data using Distance Map (거리맵을 이용한 3차원 얼굴 스캔 데이터와 CBCT 데이터의 정확한 정합 기법)

  • Lee, Jeongjin
    • Journal of Korea Multimedia Society
    • /
    • v.18 no.10
    • /
    • pp.1157-1163
    • /
    • 2015
  • In this paper, we propose a registration method of 3d facial scan data and CBCT data using voxelization and distance map. First, two data sets are initially aligned by exploiting the voxelization of 3D facial scan data and the information of the center of mass. Second, a skin surface is extracted from 3D CBCT data by segmenting air and skin regions. Third, the positional and rotational differences between two images are accurately aligned by performing the rigid registration for the distance minimization of two skin surfaces. Experimental results showed that proposed registration method correctly aligned 3D facial scan data and CBCT data for ten patients. Our registration method might give useful clinical information for the oral surgery planning and the diagnosis of the treatment effects after an oral surgery.

Oral and Maxillofacial Surgery Planning using 3D Clinical Model (3D 모델을 이용한 구강악면안면 외상환자수술 계획수립)

  • Kim, N.K.;Lee, D.H.;Kim, J.H.;Min, B.G.;Kim, Y.H.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1998 no.11
    • /
    • pp.277-278
    • /
    • 1998
  • CT/MRI images were frequently taken to evaluate the anatomic structure and disease status, and to plan the treatment modality for oral and maxillofacial surgery. However, surgeons have many difficulties in reading and understanding 2D images without long time experiences. This study presents the method of 3D reconstruction with fine CT slices and its clinical application. We applied this method a clinical patient with oral and maxillofacial trauma and produced 3D reconstructed model which shows the fracture line in panfacial area and bone defect.

  • PDF

A Study on Storytelling Plan of Stereo-scopic 3D Animation the Motif for the Tourist Attractions in Local Government : Focused on cases of the Creation of Cheongdo-gun, Gyeongbuk and Nam-gu, Ulsan (지자체 관광자원을 모티브로 한 3D입체애니메이션의 스토리텔링 기획에 관한 연구: 울산 남구와 경북 청도의 제작사례를 중심으로)

  • Kong, Jiheun;Kim, Cheeyong
    • Journal of Korea Multimedia Society
    • /
    • v.18 no.2
    • /
    • pp.260-267
    • /
    • 2015
  • The Ministry of Culture, Sports and Tourism has been implementing the 'Local Government 3D Contents Production Support Project' since 2010 to foster the 3D contents industry and secure high-quality 3D contents of local governments. This is part of national support for securing 3D media contents of local governments. In particular, stereo-scopic 3D animation is in the spotlight as media contents appropriate for simultaneous implementation of pleasure of narrative and high-level of presence to promote tourism resources of local governments. But existing stereo-scopic 3D animation-related studies are mostly concentrated in three dimensional effect expression for particular scenes or theater. Therefore, this study extracted elements required for storytelling planning by analyzing production cases of stereo-scopic 3D animation using tourism resources of local governments which have been recognized for a high quality of work.

Real-time Footstep Planning and Following for Navigation of Humanoid Robots

  • Hong, Young-Dae
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.5
    • /
    • pp.2142-2148
    • /
    • 2015
  • This paper proposes novel real-time footstep planning and following methods for the navigation of humanoid robots. A footstep command is defined by a walking direction and step lengths for footstep planning. The walking direction is determined by a uni-vector field navigation method, and the allowable yawing range caused by hardware limitation is considered. The lateral step length is determined to avoid collisions between the two legs while walking. The sagittal step length is modified by a binary search algorithm when collision occurs between the robot body and obstacles in a narrow space. If the robot body still collides with obstacles despite the modification of the sagittal step length, the lateral step length is shifted at the next footstep. For footstep following, a walking pattern generator based on a 3-D linear inverted pendulum model is utilized, which can generate modifiable walking patterns using the zero-moment point variation scheme. Therefore, it enables a humanoid robot to follow the footstep command planned for each footstep. The effectiveness of the proposed method is verified through simulation and experiment.