• 제목/요약/키워드: 3D motion analysis system

검색결과 295건 처리시간 0.031초

해양시스템 모형실험을 위한 수중운동계측시스템 개발 연구 (Development of Underwater Motion Measurement System for Model Test of Ocean System)

  • 최종수;홍섭
    • 한국해양공학회:학술대회논문집
    • /
    • 한국해양공학회 2004년도 학술대회지
    • /
    • pp.166-172
    • /
    • 2004
  • An underwater motion measurement system was constructed for applications to the model basin. A commercial motion capture system, FALCON of Motion Analysis Corp., which corrects automatically the distortion caused by refraction of the light passing through water and air, was adopted for underwater motion measurement. The modifications of FALCON system were performed: waterproofing camera housings, markers, connectors, and a new blue ring lighter. the accuracy of the motion measurement was obtained within the calibration error of 0.87mm in average and 0.89mm in standard deviation for the distance of 500mm between two markers on the calibration device. the volume of $2100mm(length)\times2100mm(breadth)\times2300mm(Height)$ was covered with 4 cameras of the underwater motion measurement system. For the performance verification, motion measurement test of a vertical mooring chain model excited at the top end was carried out. The 3D motions of mooring model were measured with variable amplitude and period of the forced excitation. Higher order motions of the mooring model were observed as the excitation period decreases. the performance of the system was verified by successfully measuring 3D motion of mooring model.

  • PDF

3-D Glove를 이용한 손동작의 분석 시스템 개발 (Develipment of a hand motion analysis system using a 3-D Glove)

  • 윤명환;권오채;한수미;박재희;이경태
    • 대한인간공학회:학술대회논문집
    • /
    • 대한인간공학회 1997년도 추계학술대회논문집
    • /
    • pp.393-397
    • /
    • 1997
  • 본 연구에서는 손동작(Hand Motion)과 수작업(Manual Task) 분석에 VR환경에서 사용되는 각도 측정 장갑(3-D Glove)을 이용하는 방법을 제안하였다. 본 연구에서 개발된 손동작(Hand Motion)과 수작업(Manual Task)의 분석 시스템은 18-sensor $Cyberglove^{TM}$정 시스템으로부터 측정된 angle data를 기초로 손동작이나 수작업에 대한 totalmuscle moment값과 total muscle excursion값을 구하고, digit와 joint의 moment값을 X,Y.Z방향별고 구하는 기능을 가지고 있다. 시스템의 구성은 : (1) $Cyberglove^{TM}$ System과 분석 시스템의 digital data 처리를 기반으로 하는 손동작의 측정 시스템 ; (2) $Cyberglove^{TM}$ System에서 얻어진 자료를 바탕으로 3차원 공간에서 손동작을 표현할 수 있는 Kinematic Hand Model ; (3) Hand Model과 $Cyberglove^{TM}$ Systme을 기반으로 3차원에서 손동작의 역학적 분석을 할 수 있는 3-D Hand Biomechanical Model ; 등으로 되어있다. 본 시스템은 Telerobotics, Medicine, Virtual Reality 등 다양한 분야에 응용이 가능하며, 수작업에 관련되는 Product Design, Manual Control Device, Computer I/O Device의 설계에도 도움이 될 것으로 기대된다.

  • PDF

순간중심을 이용한 평면 3 자유도 자동차 모델의 롤 운동 해석 (Roll Motion Analysis of a 3 D.O.F. Planar Car Model using Instantaneous Centers)

  • 이재길;심재경
    • 한국자동차공학회논문집
    • /
    • 제14권4호
    • /
    • pp.92-98
    • /
    • 2006
  • In this paper, a planar car model with 3 degrees of freedom was analyzed using the concept of the roll center. To avoid ambiguity, force components which require experimental data were excluded. Only kinematic approach was used to find the position and orientation of the vehicle body and the position of the roll center. The roll center was found by the pole with infinitesimal movement and Kennedy-Aronhold theorem. Centrodes, which are the loci of instantaneous centers of planar motion, were constructed with analyzed results to show characteristics of vehicle body motion. To verify the presented analysis method in this paper, the locus of the roll center and the motion of a 3 D.O.F. planar car model were compared with those of the 1 D.O.F. model.

컨포멀 소나에서의 표적고각 추적 및 융합을 이용한 표적기동분석 성능향상 연구 (A Study on Performance Improvement of Target Motion Analysis using Target Elevation Tracking and Fusion in Conformal Array Sonar)

  • 이해호;박규태;신기철;조성일
    • 한국군사과학기술학회지
    • /
    • 제22권3호
    • /
    • pp.320-331
    • /
    • 2019
  • In this paper, we propose a method of TMA(Target Motion Analysis) performance improvement using target elevation tracking and fusion in conformal array sonar. One of the most important characteristics of conformal array sonar is to detect a target elevation by a vertical beam. It is possible to get a target range to maximize advantages of the proposed TMA technology using this characteristic. And the proposed techniques include target tracking, target fusion, calculation of target range by multipath as well as TMA. A simulation study demonstrates the outstanding performance of proposed techniques.

Extending the OPRCB Seismic isolation system's governing equations of motion to 3D state and its application in multi-story buildings

  • M. Hosseini;S. Azhari;R. Shafie Panah
    • Earthquakes and Structures
    • /
    • 제24권3호
    • /
    • pp.217-235
    • /
    • 2023
  • Orthogonal pairs of rollers on concave beds (OPRCB) are a low-cost, low-tech rolling-based isolating system, whose high efficiency has been shown in a previous study. However, seismic performance of OPRCB isolators has only been studied in the two-dimensional (2D) state so far. This is while their performance in the three-dimensional (3D) state differs from that of the 2D state, mainly since the vertical accelerations due to rollers' motion in their beds, simultaneously in two orthogonal horizontal directions, are added up and resulting in bigger vertical inertia forces and higher rolling resistance. In this study, first, Lagrange equations were used to derive the governing equations of motion of the OPRCB-isolated buildings in 3D. Then, some regular shear-type OPRCB-isolated buildings were considered subjected to three-component excitations of far- and near-source earthquakes, and their responses were compared to those of their fixed-base counterparts. Finally, the effects of more realistic modeling and analysis were examined by comparing the responses of isolated buildings in 2D and 3D states. Response histories were obtained by the fourth-order Runge-Kutta-Nystrom method, considering the geometrical nonlinearity of isolators. Results reveal that utilizing the OPRCB isolators effectively reduces the acceleration response, however, depending on the system specifications and earthquake characteristics, the maximum responses of isolated buildings in the 3D state can be up to 40% higher than those in the 2D state.

역운동학을 이용한 실시간 동작 복원 시스템 구현 (An Implementation of Real-time Motion Restoration System based on Inverse Kinematics)

  • 이란희;이칠우
    • 한국멀티미디어학회논문지
    • /
    • 제17권6호
    • /
    • pp.741-750
    • /
    • 2014
  • This paper presents a real-time motion restoration system for people who need remedial exercise of musculoskeletal based on Inverse Kinematics. A new approach is suggested to recognize a gesture based on restored human motion which is calculated the 3D positions of intermediate joints using 3D positions of body features estimated from images. For generating the 3D candidate positions of intermediate joints which cannot be extracted from images, we apply an Inverse Kinematics theory to compute the target position of intermediate joints. And we can reduce the number of candidate positions by applying the various physical constraints of body. Finally, we can generate the more accurate final position using the Kalman filter for a motion tracking and the relationship between the previous frame information and the candidate positions. The system provide motion information which are rotation angle and height in real-time, therefore the rehabilitation exercises can be performed based on the information and figured out proper exercise for individual status.

안면 움직임 분석을 통한 단음절 음성인식 (Monosyllable Speech Recognition through Facial Movement Analysis)

  • 강동원;서정우;최진승;최재봉;탁계래
    • 전기학회논문지
    • /
    • 제63권6호
    • /
    • pp.813-819
    • /
    • 2014
  • The purpose of this study was to extract accurate parameters of facial movement features using 3-D motion capture system in speech recognition technology through lip-reading. Instead of using the features obtained through traditional camera image, the 3-D motion system was used to obtain quantitative data for actual facial movements, and to analyze 11 variables that exhibit particular patterns such as nose, lip, jaw and cheek movements in monosyllable vocalizations. Fourteen subjects, all in 20s of age, were asked to vocalize 11 types of Korean vowel monosyllables for three times with 36 reflective markers on their faces. The obtained facial movement data were then calculated into 11 parameters and presented as patterns for each monosyllable vocalization. The parameter patterns were performed through learning and recognizing process for each monosyllable with speech recognition algorithms with Hidden Markov Model (HMM) and Viterbi algorithm. The accuracy rate of 11 monosyllables recognition was 97.2%, which suggests the possibility of voice recognition of Korean language through quantitative facial movement analysis.

사용자 모션데이터를 활용한 디지털 공간디자인 프로세스 개발에 관한 연구 (A Study on the Development of Digital Space Design Process Using User′s Motion Data)

  • 안신욱;박혜경
    • 한국실내디자인학회논문집
    • /
    • 제13권3호
    • /
    • pp.187-196
    • /
    • 2004
  • The purpose of this study is to develope'a digital space design process using user's motion data' through a theoretical and experimental study. In the progress of developing a developing of design process, this study was concentrated on searching a digital method applying user's interactive reflections. As introducing a concept of space form being generated by user's experiences, we proposed'a digital design process using user's motion data'. In the experimental stage, user's motion data were extracted and transferred as digital information by user behavior analysis, optical motion capture system, immersive VR system, 3D softwares com computer programming. As the result of this study, another useful digital design process was embodied by building up a digital form-transforming method using 3D softwares providing internal algorithm. This study would be meaningful in terms of attempting a creative and interactive digital space design method, avoiding dehumanization of existing ones through the theoretical study and the experimental approach.

재활훈련을 위한 관성센서 기반 동작 분석 시스템 구현 (Implementation of Motion Analysis System based on Inertial Measurement Units for Rehabilitation Purposes)

  • 강신일;조재성;임도형;이종실;김인영
    • 재활복지공학회논문지
    • /
    • 제7권2호
    • /
    • pp.47-54
    • /
    • 2013
  • 본 논문은 몸 전체의 움직임을 측정하고 분석할 수 있는 관성센서 기반 모션 캡처링 시스템에 관한 것이다. 본 시스템 구현을 위해 자이로스코프, 가속도계 및 지자계 신호를 이용한 자세 방위 측정장치 모듈을 개발하였으며, 다수의 모듈을 환자의 분절에 부착하고 공간상에서 각 분절의 방위각을 계산하여 3차원 모션캡처를 수행하였다. 또한 재활과 관련된 많은 응용에 있어 중요한 생체역학 측정값인 신체 분절간의 관절각을 추출하는 알고리즘을 제안하였다. 개발한 자세 방위 측정장치 모듈의 성능을 평가하기 위하여 3차원 공간상의 변위 및 방위를 밀리미터 해상도로 제공할 수 있는 Vicon을 참조 측정 시스템으로 이용하였으며, 2.56도의 평균 제곱근 오차를 얻을 수 있었다. 실험 결과 본 연구에서 개발한 시스템은 뇌졸중 후 회복단계 동안 사지 및 보행 동작을 실시간으로 분석, 제공함으로서 재활의 효과, 난이도 조절 및 피드백 요소를 제공할 수 있을 것으로 판단된다.

  • PDF

모션 캡처 시스템에 대한 고찰: 임상적 활용 및 운동형상학적 변인 측정 중심으로 (A Review of Motion Capture Systems: Focusing on Clinical Applications and Kinematic Variables)

  • 임우택
    • 한국전문물리치료학회지
    • /
    • 제29권2호
    • /
    • pp.87-93
    • /
    • 2022
  • To solve the pathological problems of the musculoskeletal system based on evidence, a sophisticated analysis of human motion is required. Traditional optical motion capture systems with high validity and reliability have been utilized in clinical practice for a long time. However, expensive equipment and professional technicians are required to construct optical motion capture systems, hence they are used at a limited capacity in clinical settings despite their advantages. The development of information technology has overcome the existing limit and paved the way for constructing a motion capture system that can be operated at a low cost. Recently, with the development of computer vision-based technology and optical markerless tracking technology, webcam-based 3D human motion analysis has become possible, in which the intuitive interface increases the user-friendliness to non-specialists. In addition, unlike conventional optical motion capture, with this approach, it is possible to analyze motions of multiple people at simultaneously. In a non-optical motion capture system, an inertial measurement unit is typically used, which is not significantly different from a conventional optical motion capture system in terms of its validity and reliability. With the development of markerless technology and advent of non-optical motion capture systems, it is a great advantage that human motion analysis is no longer limited to laboratories.