• Title/Summary/Keyword: 3D motion analysis system

Search Result 295, Processing Time 0.026 seconds

Dynamic Analysis on the Closing Resistors of Gas Insulated Switchgear

  • Cho Hae-Yong;Lee Sung-Ho;Lim Sung-Sam
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.10
    • /
    • pp.1607-1613
    • /
    • 2006
  • GIS (Gas Insulated Switchgear) is used in electric power system to insure non conductivity, breaking capacity and operating reliability. In the present study, dynamic analysis on the closing resistors of the GIS has bees carried out by the commercial dynamic analysis code COSMOS MOTION and 3-D modeling program SOLID WORKS. In order to find the minimum value of chatter vibration of closing resistors, the motion of moving and fixed resistor parts of closing resistors were simulated by varying the spring constant, the damping coefficient and the mass of moving and fixed resistor parts. The simulated results were compared with experimental results. The application of the results could reduce chatter vibration of closing resistors of the GIS. These data are also useful on the development of future model GIS with minimum chatter vibration for the determinations of the spring constant, the damping coefficient and mass of a moving part.

Biomechanical Effects of Posterior Dynamic Stabilization System on Lumbar Kinematics: A Finite Element Analysis (Posterior Dynamic Stabilization System의 요추거동에 대한 생체역학적 분석)

  • Ahn, Y.H.;Chen, Wen-Ming;Jung, D.Y.;Park, K.W.;Lee, S.J.
    • Journal of Biomedical Engineering Research
    • /
    • v.29 no.2
    • /
    • pp.139-145
    • /
    • 2008
  • Many recent studies suggest that the posterior dynamic stabilization(PDS) can be a more physiologically-relevant alternative to the rigid fixation for the patients suffering from low back pain. However, its biomechanical effects or clinically proven efficacies still remain unknown. In this study, we evaluated kinematic behaviors of the lower lumbar spine with the PDS system and then compared to those of the rigid fixation system using finite element (FE) analysis. A validated FE model of intact lumbar spine(L2-L5) was developed. The implanted model was then constructed after modification from the intact to simulate two kinds of pedicle screw systems (PDS and the rigid fixation). Hybrid protocol was used to flex, extend, laterally bend and axially rotate the FE model. Results showed that the PDS systems are more flexible than rigid fixation systems, yet not flexible enough to preserve motion. PDS system allowed $16.2{\sim}42.2%$ more intersegmental rotation than the rigid fixation at the implanted level. One the other hand, at the adjacent level it allowed more range of motion ($2.0%{\sim}8.3%$) than the rigid fixation. The center of rotation of the PDS model remained closer to that of the intact spine. These results suggest that the PDS system could be able to prevent excessive motion at the adjacent levels and restore the spinal kinematics.

Resting Hand and Wrist Posture Evaluation (휴식 상태의 손과 손목 자세 평가)

  • Lee, Kyung-Sun;Jung, Myung-Chul
    • Journal of the Ergonomics Society of Korea
    • /
    • v.29 no.5
    • /
    • pp.727-734
    • /
    • 2010
  • The objective of this study was to evaluate the resting postures of the fingers and wrist based on the biomechanical model in term of hand posture (neutral, pronation, and supination) and gender (male and female). The finger and wrist joint angles were measured with VICON motion system. The EMG system was used to examine the muscle activity in the resting condition. The participants consisted of twenty male and twenty female students. The angles of the fingers and wrist were analyzed by means of the coordinate system associated with the International Society of Biomechanics. Hand posture was significant for all the joints. The finger and wrist joint flexed in supination more than in neutral and pronation. The hand posture and gender were not significant for the results of muscle activity, but it had larger muscle activities in supination more than in neutral and pronation.

Monte Carlo analysis of earthquake resistant R-C 3D shear wall-frame structures

  • Taskin, Beyza;Hasgur, Zeki
    • Structural Engineering and Mechanics
    • /
    • v.22 no.3
    • /
    • pp.371-399
    • /
    • 2006
  • The theoretical background and capabilities of the developed program, SAR-CWF, for stochastic analysis of 3D reinforced-concrete shear wall-frame structures subject to seismic excitations is presented. Incremental stiffness and strength properties of system members are modeled by extended Roufaiel-Meyer hysteretic relation for bending while shear deformations for walls by Origin-Oriented hysteretic model. For the critical height of shear-walls, division to sub-elements is performed. Different yield capacities with respect to positive and negative bending, finite extensions of plastic hinges and P-${\delta}$ effects are considered while strength deterioration is controlled by accumulated hysteretic energy. Simulated strong motions are obtained from a Gaussian white-noise filtered through Kanai-Tajimi filter. Dynamic equations of motion for the system are formed according to constitutive and compatibility relations and then inserted into equivalent It$\hat{o}$-Stratonovich stochastic differential equations. A system reduction scheme based on the series expansion of eigen-modes of the undamaged structure is implemented. Time histories of seismic response statistics are obtained by utilizing the computer programs developed for different types of structures.

A Theoretical Model for the Analysis of Residual Motion Artifacts in 4D CT Scans (이론적 모델을 이용한 4DCT에서의 Motion Artifact 분석)

  • Kim, Tae-Ho;Yoon, Jai-Woong;Kang, Seong-Hee;Suh, Tae-Suk
    • Progress in Medical Physics
    • /
    • v.23 no.3
    • /
    • pp.145-153
    • /
    • 2012
  • In this study, we quantify the residual motion artifact in 4D-CT scan using the dynamic lung phantom which could simulate respiratory target motion and suggest a simple one-dimension theoretical model to explain and characterize the source of motion artifacts in 4DCT scanning. We set-up regular 1D sine motion and adjusted three level of amplitude (10, 20, 30 mm) with fixed period (4s). The 4DCT scans are acquired in helical mode and phase information provided by the belt type respiratory monitoring system. The images were sorted into ten phase bins ranging from 0% to 90%. The reconstructed images were subsequently imported into the Treatment Planning System (CorePLAN, SC&J) for target delineation using a fixed contour window and dimensions of the three targets are measured along the direction of motion. Target dimension of each phase image have same changing trend. The error is minimum at 50% phase in all case (10, 20, 30 mm) and we found that ${\Delta}S$ (target dimension change) of 10, 20 and 30 mm amplitude were 0 (0%), 0.1 (5%), 0.1 (5%) cm respectively compare to the static image of target diameter (2 cm). while the error is maximum at 30% and 80% phase ${\Delta}S$ of 10, 20 and 30 mm amplitude were 0.2 (10%), 0.7 (35%), 0.9 (45%) cm respectively. Based on these result, we try to analysis the residual motion artifact in 4D-CT scan using a simple one-dimension theoretical model and also we developed a simulation program. Our results explain the effect of residual motion on each phase target displacement and also shown that residual motion artifact was affected that the target velocity at each phase. In this study, we focus on provides a more intuitive understanding about the residual motion artifact and try to explain the relationship motion parameters of the scanner, treatment couch and tumor. In conclusion, our results could help to decide the appropriate reconstruction phase and CT parameters which reduce the residual motion artifact in 4DCT.

Effect of dimensionless number and analysis of gait pattern by gender -spatiotemporal variables- (보행 분석시 Dimensionless number의 효과 및 성별간 보행패턴 분석 -시공간변인-)

  • Lee, Hyun-Seob
    • 한국체육학회지인문사회과학편
    • /
    • v.53 no.5
    • /
    • pp.521-531
    • /
    • 2014
  • The purposes of this study were to evaluate the effect of normalization by dimensionless number of Hof(1996) and to analysis the gait pattern for 20s Korean males and females. Subjects are selected in accordance with classification system of Korean standard body figure and age. Experimental equipment is the Motion capture system. Subjects who are walked at a self-selected normal walking speed were photographed using the Motion capture system and analyzed using 3D motion analysis method with OrthoTrak, Cortex, Matlab and SPSS for a statistical test. When used to normalize data, there are no differences of statistical significances between gender in all spatiotemporal variables. I concluded that gait research for mutual comparison requires a normalization by dimensionless number to eliminate the effects of the body size and to accurate statistical analysis.

One-way Coupled Response Analysis between Floating Wind-Wave Hybrid Platform and Wave Energy Converters (부유식 풍력-파력발전 플랫폼과 탑재된 파력발전기와의 단방향 연성 운동 해석)

  • Lee, Hyebin;Bae, Yoon Hyeok;Cho, Il-Hyoung
    • Journal of Ocean Engineering and Technology
    • /
    • v.30 no.2
    • /
    • pp.84-90
    • /
    • 2016
  • In this study, a six degree-of-freedom motion analysis of a wind-wave hybrid platform equipped with numerous wave energy converters (WECs) was carried out. To examine the effect of the WECs on the platform, an analysis of one-way coupling was carried out, which only considered the power take-off (PTO) damping of the static WECs on the platform. The equation of motion of a floating platform with mooring lines in the time domain was established, and the responses of the one-way coupled platform were then compared with the case of a platform without any coupling effects from the WECs. The hydrodynamic coefficients and wave exciting forces were obtained from the 3D diffraction/radiation pre-processor code WAMIT based on the boundary element method. Then, an analysis of the dynamic responses of the floating platform with or without the WEC effect in the time domain was carried out. All of the dynamics of a floating platform with multiple wind turbines were obtained by coupling FAST and CHARM3D in the time domain, which was further extended to include additional coupled dynamics for multiple turbines. The analysis showed that the PTO damping effect on platform motions was negligible, but coupled effects between multiple WECs and the platform may differentiate the heave, roll, and pitch platform motions from the one without any effects induced by WECs.

Inclined cable-systems in suspended bridges for restricting dynamic deformations

  • Raftoyiannis, Ioannis;Konstantakopoulos, Theodore;Michaltsos, George
    • Coupled systems mechanics
    • /
    • v.6 no.4
    • /
    • pp.377-398
    • /
    • 2017
  • The present paper deals with the influence of the inclination of cables' system on the decrease of the lateral-torsional motion because of dynamic loadings. For this goal, a mathematical model is proposed. A 3-D analysis is performed for the solution of the bridge model. The theoretical formulation is based on a continuum approach, which has been widely used in the literature to analyze such bridges. The resulting uncoupled equations of motion are solved using the Laplace Transformation, while the case of the coupled motion is solved through the use of the potential energy. Finally, characteristic examples are presented and useful results are obtained.

A Development of Motion Detection Based Serious Game "ChoDeungGangHo" for Physical Training

  • Lee, Bum-Ro
    • Journal of the Korea Society of Computer and Information
    • /
    • v.20 no.11
    • /
    • pp.55-62
    • /
    • 2015
  • In this paper we propose a method to analyze user's motion as a game command, and implement a sports serious game applied the motion analysis method as a command interpreter. Recently, various contents platforms appear in industrial market, the computer game contents plays an important role in these emerging platforms as a killer contents. The computer game has enough values as an independent major cultural product, moreover it has the potential to be applied in various other fields such as education, healthcare, training, and so on. It could motivate users to do something continuously, and it could also support an immersive environment in a certain special game contents such as VR game. The Serious game 'ChoDeungGangHo', implemented in this paper, is the sensory healthcare serious game based on 3D run game and fitness game. It is designed for user to train the various exercise element by just playing the game, and it also supports the user management system and the linkage of social media. We proposes the sensory serious game 'ChoDeungGangHo' as a model of commercial serious game.

Acoustic Scattering Characteristics of the Sea Bottom ( 1 ) (해저의 초음파 산란 특성에 관한 연구 ( I ))

  • Lee, Dae-Jae;Sin, Hyeong-Il;Park, Jung-Hui
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.26 no.1
    • /
    • pp.51-56
    • /
    • 1990
  • The authors carried out an experiment to investigate the echo fluctuations from ocean bottom due to ship's motion. The bottom echoes was continuously measured, by using a 50 kHz Echo sounder on board of the ship being at anchor under the sea condition of 15 knots in wind velocity and approximately 2 meters in wave height, to extract the information about the pulse stretching and the ship's motion from the first return and the second return. A data acquisition system was used to record digitally the envelope of the echoes, and the analysis was applied to the echo data collected from the continental shelf in the South China Sea. The results obtained can be summarized as follows: 1. The equivalent pulse width of the second return echoes from ocean bottom was 2.4 times longer than that of the first return echoes. 2. The echo peak values of the first return fluctuated markedly than that of the second return and was shown to be extremely sensitive to small change in ship's motion. 3. Energy target strength and peak target strength of the sandy-mud bottom were -13.4 dB and -14.6 dB, respectively.

  • PDF