• Title/Summary/Keyword: 3D motion analysis program

Search Result 99, Processing Time 0.024 seconds

Correlation Between Knee Muscle Strength and Maximal Cycling Speed Measured Using 3D Depth Camera in Virtual Reality Environment

  • Kim, Ye Jin;Jeon, Hye-seon;Park, Joo-hee;Moon, Gyeong-Ah;Wang, Yixin
    • Physical Therapy Korea
    • /
    • v.29 no.4
    • /
    • pp.262-268
    • /
    • 2022
  • Background: Virtual reality (VR) programs based on motion capture camera are the most convenient and cost-effective approaches for remote rehabilitation. Assessment of physical function is critical for providing optimal VR rehabilitation training; however, direct muscle strength measurement using camera-based kinematic data is impracticable. Therefore, it is necessary to develop a method to indirectly estimate the muscle strength of users from the value obtained using a motion capture camera. Objects: The purpose of this study was to determine whether the pedaling speed converted using the VR engine from the captured foot position data in the VR environment can be used as an indirect way to evaluate knee muscle strength, and to investigate the validity and reliability of a camera-based VR program. Methods: Thirty healthy adults were included in this study. Each subject performed a 15-second maximum pedaling test in the VR and built-in speedometer modes. In the VR speedometer mode, a motion capture camera was used to detect the position of the ankle joints and automatically calculate the pedaling speed. An isokinetic dynamometer was used to assess the isometric and isokinetic peak torques of knee flexion and extension. Results: The pedaling speeds in VR and built-in speedometer modes revealed a significantly high positive correlation (r = 0.922). In addition, the intra-rater reliability of the pedaling speed in the VR speedometer mode was good (ICC [intraclass correlation coefficient] = 0.685). The results of the Pearson correlation analysis revealed a significant moderate positive correlation between the pedaling speed of the VR speedometer and the peak torque of knee isokinetic flexion (r = 0.639) and extension (r = 0.598). Conclusion: This study suggests the potential benefits of measuring the maximum pedaling speed using 3D depth camera in a VR environment as an indirect assessment of muscle strength. However, technological improvements must be followed to obtain more accurate estimation of muscle strength from the VR cycling test.

Analysis of Fluid-Structure Interactions Considering Nonlinear Free Surface Condition for Base-isolated Fluid Storage Tank (면진된 유체저장탱크의 비선형 유체-구조물 상호작용 해석)

  • Kim, Moon-Kyum;Lim, Yun-Mook;Cho, Kyung-Hwan;Jung, Sung-Won;Eo, Jun
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2003.09a
    • /
    • pp.481-488
    • /
    • 2003
  • A fluid-structure-isolator interaction program was developed in this study. The behavior of liquid regions are simulated by the boundary element method, and then the technique of analyzing the free surface motion in time domain is developed by using the nonlinear free surface boundary condition(NFBC) and the condition of interface between the structure and the fluid. Structure regions are modeled by the finite element method. In order to construct the governing equation of the fluid structure interaction(FSI)problem in time domain, the finite elements for a structure and boundary elements for liquid are coupled using the equilibrium condition, the compatibility condition and NFBC. The isolator is simulated by equation proposedin 3D Basis Me. In order to verify the validity and the applicability of the developed fluid- structure -Isolator interaction program, The horizontal forced vibration analysis was performed. The applicability of the developed method is verified through the artificial seismic analysis of real size liquid storage tank.

  • PDF

The effect of unstable plate on the ankle joint displacement and dynamic balance ability of female college students wearing high-heeled shoes (불안정 판을 이용한 훈련이 높은 굽 신발을 신은 여자 대학생의 발목관절 변위와 동적균형능력에 미치는 영향)

  • Nam, Taek-Gill;Lee, Ji-Hyun
    • Journal of Convergence for Information Technology
    • /
    • v.7 no.5
    • /
    • pp.31-38
    • /
    • 2017
  • The purpose of this study was to investigate the effect of training using unstable plate on displacement and dynamic balance ability of ankle joints in women college students wearing high heel shoes. Subjects were randomly divided into experimental group and control group. 3D motion analysis was performed while walking 9cm high-heeled shoes and walking 5m. Dynamic balanced ability evaluation was performed. The intervention program was administered to experimental subjects three times a week for four weeks. They performed balance training using unstable plates. There was no intervention in the control group. The results showed that the displacement of the ankle joints in the experimental group after the intervention was decreased overall and the dynamic balance ability was significantly increased. The control group showed little change. As a result, the training using unstable plate stabilizes the ankle joints and improves the dynamic balance ability of the subjects wearing high-heeled shoes.

Effect of an 8-week Closed Kinetic Chain Styled Pilates Exercise on Lower Limb Alignment (8주간 닫힌 사슬형 필라테스 운동이 하지 정렬에 미치는 영향)

  • Ga Ram Jeon;Sukhoon Yoon
    • Korean Journal of Applied Biomechanics
    • /
    • v.33 no.4
    • /
    • pp.128-136
    • /
    • 2023
  • Objective: The aim of this study was to investigate the effect of an 8-week closed kinetic chain typed Reformer and Chair Pilates exercise on static and dynamic lower limb alignment for healthy female adults. Method: Ten healthy young female adults without musculoskeletal injury history in last 6 months (Age: 29.3 ± 3.5 yrs., Height: 165 ± 3.4 cm, Body mass: 58.2 ± 5.4 kg) participated in this study. All participants asked to join the 8-week closed kinetic chain typed Reformer and Chair Pilates exercise, and the program was conducted for 60 minutes twice a week. Participants were asked to be measure a static Q-angle and performed free squat one week before and after the program. A 3-D motion analysis with 8 infrared cameras and 5 channels of EMG was executed in this study. The effectiveness of the training was evaluated by paired t-test, and the significance level was set at .05. Results: A significantly decreased in internal rotation angles was found at hip joint during free squat after the training. Also, significantly decreased in lateral rotation angles were found at knee and ankle joint during free squat after training. Finally, significantly decreased in muscle activations were found at adductor longus and peroneus longus during free squat after training. Conclusion: From results of our study, it is concluded that an 8-week closed kinetic chain typed Pilates exercise positively effect on lower limb alignment during dynamic movement.

3-Dimensional Static and Dynamic Analysis of Soil-Framework Interaction System (지반-골조구조물 상호작용계의 3차원 정.동적 해석)

  • 서상근;장병순
    • Computational Structural Engineering
    • /
    • v.10 no.2
    • /
    • pp.243-254
    • /
    • 1997
  • When dynamic loads such as mechanical load, wind load, and seismic load, which causing a vibration, acts on the body of the 3-D framework resting on soil foundation, it is required to consider the dynamic behavior of soil-space framework interation system. Thus, this study presents the 3-dimensional soil-interaction system analyzed by finite element method using 4-node plate elements with flexibility, 2-node beam elements, and 8-node brick elements for the purpose of idealizing an actual structure into a geometric shape. The objective of this study is the formulation of the equation for a dynamic motion and the development of the finite element program which can analyze the dynamic behavior of soil-space framework interaction system.

  • PDF

Vibration Analysis of Steering System in Commercial Vehicles (상용차 조향계의 진동해석)

  • Cho, B.K.;Ryu, G.H.;Kang, H.D.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.3 no.2
    • /
    • pp.86-94
    • /
    • 1995
  • For a driving vehicle, a self-excited vibration of a pair of steerable wheels about their steering axis accompanied by tramp is called shimmy. Shimmy is caused by the coupling effects of the complicated actions of wheel and tire and the tramp motion of front wheel axle. Because front axle is no longer used on passenger cars shimmy occurring is not considerable. But in commercial vehicles using front wheel axle suspension system shimmy should be considered in design process. In this paper, the model closed to a practical vehicle was developed to analyze the shimmy of a commercial vehicle, and the effects of various design parameters to shimmy were observed by dynamic simulation with multibody dynamics program, DADS. The validity of developed model and analysis results were verified by practical vehicle experiments.

  • PDF

A Study on the Design of the Automatic Cutting Mechanism of the Perforation Pipes in an Automobile Muffler (차량 소음기용 다공파이프 자동절단 메커니즘 설계에 관한 연구)

  • Kim, Yong-Seok;Jeong, Chan-Se;Yang, Soon-Young
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.20 no.3
    • /
    • pp.350-356
    • /
    • 2011
  • In this paper, we proposed the automatic cutting mechanism of the perforation pipes in an automobile muffler. This cutting mechanism makes continuous work possible, because it performs the batch work via the sequential operation of loading, feeding, cutting, and discharging. The proposed cutting mechanism consists of the frame unit, escape unit, turning unit, feeding unit, vision system, clamping unit, spindle/cutting unit and cooling unit. And, these mechanisms have been modularized through mechanical, dynamical and structural optimized design using the SMO (SimDesigner Motion) analysis module. Also, the virtual prototype was carried out using the 3-D CAD program. The cutting process cycle is performed in the order of loading, vision processing, feeding, clamping, cutting and discharging. And the cycle time for cutting one piece was designed to be completed in four seconds.

Analysis of Low-Profile Piezoelectric Butterfly Linear Motor using 3D Laser Vibrometer

  • Lee, Won-Hee;Kang, Chong-Yun;Paik, Dong-Soo;Ju, Byeong-Kwon;Yoon, Seok-Jin
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.06a
    • /
    • pp.325-325
    • /
    • 2010
  • Piezoelectric linear motors have been widely studied for auto focusing devices of digital cameras and cellular phones due to their simple structure. In this paper, we confirmed that novel piezoelectric butterfly linear motor was fabricated and its dynamic properties were analyzed. The piezoelectric transducer (having size $9{\times}8{\times}1\;mm^3$) is composed of an elastic plate, which includes a tip for energy transfer and two fixing protrusions for fixture, and two piezoelectric ceramics. The butterfly linear motor has been designed and optimized using A TILA simulation program. The superposed motion is an elliptical vibration on the tip. The actual movement of the manufactured actuator was confirmed by a 3D laser dopier vibrometer and compared with the simulation results. The results of numerical study and experimental investigation will be used for the future optimization of the actuator and the realization of the advanced ultrasonic motor.

  • PDF

3D Measurement Method Based on Point Cloud and Solid Model for Urban SingleTrees (Point cloud와 solid model을 기반으로 한 단일수목 입체적 정량화기법 연구)

  • Park, Haekyung
    • Korean Journal of Remote Sensing
    • /
    • v.33 no.6_2
    • /
    • pp.1139-1149
    • /
    • 2017
  • Measuring tree's volume is very important input data of various environmental analysis modeling However, It's difficult to use economical and equipment to measure a fragmented small green space in the city. In addition, Trees are sensitive to seasons, so we need new and easier equipment and quantification methods for measuring trees than lidar for high frequency monitoring. In particular, the tree's size in a city affect management costs, ecosystem services, safety, and so need to be managed and informed on the individual tree-based. In this study, we aim to acquire image data with UAV(Unmanned Aerial Vehicle), which can be operated at low cost and frequently, and quickly and easily quantify a single tree using SfM-MVS(Structure from Motion-Multi View Stereo), and we evaluate the impact of reducing number of images on the point density of point clouds generated from SfM-MVS and the quantification of single trees. Also, We used the Watertight model to estimate the volume of a single tree and to shape it into a 3D structure and compare it with the quantification results of 3 different type of 3D models. The results of the analysis show that UAV, SfM-MVS and solid model can quantify and shape a single tree with low cost and high time resolution easily. This study is only for a single tree, Therefore, in order to apply it to a larger scale, it is necessary to follow up research to develop it, such as convergence with various spatial information data, improvement of quantification technique and flight plan for enlarging green space.

Changes of Impact Variables by the Change of Golf Club Length (골프 클럽에 따른 타격자세의 변화)

  • Sung, Rak-Joon
    • Korean Journal of Applied Biomechanics
    • /
    • v.15 no.4
    • /
    • pp.181-189
    • /
    • 2005
  • To know the proper impact posture and changes for the various clubs, changes of impact variables according to the change of golf club length was investigated. Swing motions of three male low handicappers including a professional were taken using two high-speed video cameras. Four clubs iron 7, iron 5, iron 3 and driver (wood 1) were selected for this experiment. Three dimensional motion analysis techniques were used to get the kinematical variables. Mathcad and Kwon3D motion analysis program were used to analyze the position, distance and angle data in three dimensions. Major findings of this study were as follows. 1. Lateral position of the head remained more right side of the target up to 3.5cm compared to the setup as the length of the club increased. 2. Left shoulder raised up to 5cm and right shoulder lowered up to 2.5cm compared to setup. The shoulder line opened slightly (maximum 11 degrees) to the target line. 3. Forward lean angle of the trunk decreased up to 4 degrees (more erected) compared to setup. 4. Side lean angle of the trunk increased compared to setup and increased up to 16 degrees as the club length increased. 5. The pelvis moved to the target line direction horizontally and opened up to 31 degrees. Right hip moves laterally to the grip position at the setup. 6. Flexion of the left leg maintained almost constantly but the right leg flexed up to 11 degrees compared to setup. 7. Left arm is straightened but the right arm flexed about 20degrees compared to straight. 8. Center of the shoulders were in front of the knees and toes of the feet. 9. Hands moved to the left (8.7cm), forward (5.7cm) and upward (11.6cm) compared to the setup. This is because of the rotation of pelvis and shoulders. 10. Shaft angle to the ground was smaller than the lie angle of the clubs but it increased close to the lie of the clubs at impact.