• Title/Summary/Keyword: 3D motion analysis

Search Result 735, Processing Time 0.036 seconds

Analysis of the Female 500m Sprint Starting Motion in Short Track Speed Skating (여자 500m 쇼트트랙 스피드 스케이팅의 스타트 기술분석)

  • Back, Jin-Ho;Kwak, Chang-Soo;Chung, Nam-Ju
    • Korean Journal of Applied Biomechanics
    • /
    • v.14 no.3
    • /
    • pp.285-299
    • /
    • 2004
  • The purpose of this study is to identify female 500m sprint start motion by the center of gravity position in short track speed skating. The center of gravity position ratio was divided into three type(type A front : 80%-back : 20%, type B front : 70%-back 30%, type C front: 50%-back : 50%). Three video cameras were used for 3D motion analysis with DLT method and the results were as follows: The elapsed time in starting motion was appeared that type B was the shortest and type A was the longest. It was appear that the stroke length of type A was longer than that type B and C during starting phase. This result was similar to displacement of center of gravity. It was appeared that skill type of center of gravity position ratio type B' ankle and knee joint angle were lower than that of type A and C. Observing these results it was conclusion that skill type B of center of gravity position ratio was more faster than that of type A and C. But it is important that these skill type needed to verifying more subjects.

The Evaluation of the Work Motion Suitability of Men's Coverall Type Painting Work Clothes Using 3D Virtual Clothing Simulation (3차원 가상착의 시스템을 활용한 남성용 커버롤 도장 작업복의 작업동작 적합성 평가)

  • Park, Gin Ah
    • Journal of Fashion Business
    • /
    • v.24 no.4
    • /
    • pp.63-84
    • /
    • 2020
  • It is essential to consider the heavy industrial working environment factors which are regarded as harmful to workers' health and safety and suitable work motion factors for the workers' motion while developing the work clothes for painting workers in the machinery and shipbuilding industries. This study suggests the use of 3D virtual clothing simulations as a solution to protect the human body from hazardous working conditions accompanying the development of painting work clothes and assessing the work motion performance associated with the comfort while workers wear them during the work clothes. The initial aim of the study is to examine a male avatar to run work motions simultaneously within a 3D virtual clothing simulator, secondly, to present the simulation images of coverall type men's painting work clothes with the application of two experimental painting work motions and one control motion to the avatar, and finally, to present the distance analysis images of the painting work clothes and the avatar body and air gap rates through the analysis of cross-sections of the avatar body while wearing the coverall work clothes according to the work motions. The results showed that the distance degree of painting work clothes to the avatar body for each part of the human body when performing painting work motions. Moreover, 3D virtual clothing simulations enabled the creation of a male model avatar to run painting work motions together and the painting work clothes developed were found to be suitable for the painting work motions.

The Study of 3D Motion Analysis on Lower Limb during Walking with Walker on Older People (노인의 워커 사용에 따른 보행 시 하지 관절 3차원 동작 분석에 관한 연구)

  • Kim, Seonchil;Lee, Sangyeol
    • Journal of The Korean Society of Integrative Medicine
    • /
    • v.5 no.1
    • /
    • pp.19-24
    • /
    • 2017
  • Purpose : The purpose of this study was to find out the difference motion of hip, knee and ankle joint during walking according to using walker on older people. Method : Korean older people of 34 subjects was participated in this study. Participants was measured joint motion on hip, knee and ankle joint during both conditions (walking with walker and without walker). The measured data were analyzed using independent t-test to investigate the difference of joint motion on the both condition. The statistical analyses were performed using Predictive Analytics Soft Ware (PASW) for windows(Ver. 19) and p-value less than .05 were considered significant for all cases. Result : The study showed that more joint motion on hip flexion and ankle pronation is increased by using walker. And hip extension, knee external rotation and ankle plantar flexion is decreased by using walker. Conclusion : This study suggest that using walker on older people was change the motion of the lower limb joint during walking. Therefore, It is necessary to develop a new walker that can reduce dependency and ensure stability on older people during walking.

3D Depth Information Extraction Algorithm Based on Motion Estimation in Monocular Video Sequence (단안 영상 시퀸스에서 움직임 추정 기반의 3차원 깊이 정보 추출 알고리즘)

  • Park, Jun-Ho;Jeon, Dae-Seong;Yun, Yeong-U
    • The KIPS Transactions:PartB
    • /
    • v.8B no.5
    • /
    • pp.549-556
    • /
    • 2001
  • The general problems of recovering 3D for 2D imagery require the depth information for each picture element form focus. The manual creation of those 3D models is consuming time and cost expensive. The goal in this paper is to simplify the depth estimation algorithm that extracts the depth information of every region from monocular image sequence with camera translation to implement 3D video in realtime. The paper is based on the property that the motion of every point within image which taken from camera translation depends on the depth information. Full-search motion estimation based on block matching algorithm is exploited at first step and ten, motion vectors are compensated for the effect by camera rotation and zooming. We have introduced the algorithm that estimates motion of object by analysis of monocular motion picture and also calculates the averages of frame depth and relative depth of region to the average depth. Simulation results show that the depth of region belongs to a near object or a distant object is in accord with relative depth that human visual system recognizes.

  • PDF

Comparative Study on the Interface and Interaction for Manipulating 3D Virtual Objects in a Virtual Reality Environment (가상현실 환경에서 3D 가상객체 조작을 위한 인터페이스와 인터랙션 비교 연구)

  • Park, Kyeong-Beom;Lee, Jae Yeol
    • Korean Journal of Computational Design and Engineering
    • /
    • v.21 no.1
    • /
    • pp.20-30
    • /
    • 2016
  • Recently immersive virtual reality (VR) becomes popular due to the advanced development of I/O interfaces and related SWs for effectively constructing VR environments. In particular, natural and intuitive manipulation of 3D virtual objects is still considered as one of the most important user interaction issues. This paper presents a comparative study on the manipulation and interaction of 3D virtual objects using different interfaces and interactions in three VR environments. The comparative study includes both quantitative and qualitative aspects. Three different experimental setups are 1) typical desktop-based VR using mouse and keyboard, 2) hand gesture-supported desktop VR using a Leap Motion sensor, and 3) immersive VR by wearing an HMD with hand gesture interaction using a Leap Motion sensor. In the desktop VR with hand gestures, the Leap Motion sensor is put on the desk. On the other hand, in the immersive VR, the sensor is mounted on the HMD so that the user can manipulate virtual objects in the front of the HMD. For the quantitative analysis, a task completion time and success rate were measured. Experimental tasks require complex 3D transformation such as simultaneous 3D translation and 3D rotation. For the qualitative analysis, various factors relating to user experience such as ease of use, natural interaction, and stressfulness were evaluated. The qualitative and quantitative analyses show that the immersive VR with the natural hand gesture provides more intuitive and natural interactions, supports fast and effective performance on task completion, but causes stressful condition.

Motion Simulation of FPSO in Waves through Numerical Sensitivity Analysis (수치 민감도 해석을 통한 파랑중 FPSO운동 시뮬레이션)

  • Kim, Je-in;Park, Il-Ryong;Suh, Sung-Bu;Kang, Yong-Duck;Hong, Sa-Young;Nam, Bo-Woo
    • Journal of Ocean Engineering and Technology
    • /
    • v.32 no.3
    • /
    • pp.166-176
    • /
    • 2018
  • This paper presents a numerical sensitivity analysis for the simulation of the motion performance of an offshore structure in waves using computational fluid dynamics (CFD). Starting with 2D wave simulations with varying numerical parameters such as grid spacing and CFL value, proper numerical conditions were found for accurate wave propagation that avoids numerical diffusion problems. These results were mapped on 2D error distributions of wave amplitude and wave length against the numbers of grids per wave length and per wave height under a given CFL condition. Finally, the 2D numerical sensitivity result was validated through CFD simulation of the motion of a FPSO in waves showing good accuracy in motion RAOs compared with existing potential flow solutions.

Foreground Extraction and Depth Map Creation Method based on Analyzing Focus/Defocus for 2D/3D Video Conversion (2D/3D 동영상 변환을 위한 초점/비초점 분석 기반의 전경 영역 추출과 깊이 정보 생성 기법)

  • Han, Hyun-Ho;Chung, Gye-Dong;Park, Young-Soo;Lee, Sang-Hun
    • Journal of Digital Convergence
    • /
    • v.11 no.1
    • /
    • pp.243-248
    • /
    • 2013
  • In this paper, depth of foreground is analysed by focus and color analysis grouping for 2D/3D video conversion and depth of foreground progressing method is preposed by using focus and motion information. Candidate foreground image is generated by estimated movement of image focus information for extracting foreground from 2D video. Area of foreground is extracted by filling progress using color analysis on hole area of inner object existing candidate foreground image. Depth information is generated by analysing value of focus existing on actual frame for allocating depth at generated foreground area. Depth information is allocated by weighting motion information. Results of previous proposed algorithm is compared with proposed method from this paper for evaluating the quality of generated depth information.

A Study on the Development of Digital Space Design Process Using User′s Motion Data (사용자 모션데이터를 활용한 디지털 공간디자인 프로세스 개발에 관한 연구)

  • 안신욱;박혜경
    • Korean Institute of Interior Design Journal
    • /
    • v.13 no.3
    • /
    • pp.187-196
    • /
    • 2004
  • The purpose of this study is to develope'a digital space design process using user's motion data' through a theoretical and experimental study. In the progress of developing a developing of design process, this study was concentrated on searching a digital method applying user's interactive reflections. As introducing a concept of space form being generated by user's experiences, we proposed'a digital design process using user's motion data'. In the experimental stage, user's motion data were extracted and transferred as digital information by user behavior analysis, optical motion capture system, immersive VR system, 3D softwares com computer programming. As the result of this study, another useful digital design process was embodied by building up a digital form-transforming method using 3D softwares providing internal algorithm. This study would be meaningful in terms of attempting a creative and interactive digital space design method, avoiding dehumanization of existing ones through the theoretical study and the experimental approach.

Effects of spatial variability of earthquake ground motion in cable-stayed bridges

  • Ferreira, Miguel P.;Negrao, Joao H.
    • Structural Engineering and Mechanics
    • /
    • v.23 no.3
    • /
    • pp.233-247
    • /
    • 2006
  • Most codes of practice state that for large in-plane structures it is necessary to account for the spatial variability of earthquake ground motion. There are essentially three effects that contribute for this variation: (i) wave passage effect, due to finite propagation velocity; (ii) incoherence effect, due to differences in superposition of waves; and (iii) the local site amplification due to spatial variation in geological conditions. This paper discusses the procedures to be undertaken in the time domain analysis of a cable-stayed bridge under spatial variability of earthquake ground motion. The artificial synthesis of correlated displacements series that simulate the earthquake load is discussed first. Next, it is described the 3D model of the International Guadiana Bridge used for running tests with seismic analysis. A comparison of the effects produced by seismic waves with different apparent propagation velocities and different geological conditions is undertaken. The results in this study show that the differences between the analysis with and without spatial variability of earthquake ground motion can be important for some displacements and internal forces, especially those influenced by symmetric modes.

The method to estimate 3-D coordinates of lower trunk muscles using orientation angles during a motion (몸통 운동시 지향각(Orientation angles)을 이용한 허리 근육의 3차원 위치 좌표 추정 기법)

  • Lim, Young-Tae
    • Korean Journal of Applied Biomechanics
    • /
    • v.12 no.1
    • /
    • pp.125-133
    • /
    • 2002
  • The purpose of this study was to develop a method for estimating 3-D coordinates of lower trunk muscles using orientation angles during a motion. Traditional 3-D motion analysis system with DLT technique was used to track down the locations of eight reference markers which were attached on the back of the subject. In order to estimate the orientations of individual lumbar vertebrae and musculoskeletal parameters of the lower trunk muscle, the rotation matrix of the middle trunk reference frame relative to the lower trunk reference frame was determined and the angular locations of individual lumbar vertebrae were estimated by partitioning the orientation angles (Cardan angles) that represent the relative angles between the rotations of the middle and lower trunks. When the orientation angles of individual intervertebral joints were known at a given instant, the instantaneous coordinates of the origin and insertion for all selected muscles relative to the L5 local reference frame were obtained by applying the transformation matrix to the original coordinates which were relative to a local reference frame (S1, L4, L3, L2, or L1) in a rotation sequence about the Z-, X- and Y-axes. The multiplication of transformation matrices was performed to estimate the geometry and kinematics of all selected muscles. The time histories of the 3-D coordinates of the origin and insertion of all selected muscles relative to the center of the L4-L5 motion segment were determined for each trial.