• Title/Summary/Keyword: 3D micro-structure

Search Result 226, Processing Time 0.028 seconds

Temperature Property Analysis of Micro Flow Sensor using Thermal Transfer Equation (열운송 방정식을 이용한 마이크로 흐름센서의 온도특성 해석)

  • Kim, Tae-Yong;Chung, Wan-Young
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • v.9 no.1
    • /
    • pp.363-366
    • /
    • 2005
  • A micro flow sensor on silicon substrate allows the fabrication of small components where many different functions can be integrated so that the functionality of the sensors can be increased. Further more, due to the small size of the elements the sensors can be quite fast. A thermal mass flow sensor measures the asymmetry of temperature profile around the heater which is modulated by the fluid flow. In normal, a mass flow sensor is composed of a central heater and a pair of temperature sensing elements around the heater. A new 2-D wide range micro flow sensor structure with three pairs of temperature sensors and a central heater was proposed and numerically simulated by the Finite difference formulation to confirm the feasibility of the flow sensor structure.

  • PDF

LTCC 기판에 성장시킨 PZT 박막의 열처리 조건에 따른 특성

  • Lee, Gyeong-Cheon;Hwang, Hyeon-Seok;Lee, Tae-Yong;Heo, Won-Yeong;Song, Jun-Tae
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.03b
    • /
    • pp.14-14
    • /
    • 2010
  • Recently, low temperature co-fired ceramic (LTCC) technology has gained a remarkable application potential in sensors, actuators and micro systems fields because of its very good electrical and mechanical properties, high reliability and stability as well as possibility of making 3D micro structures. In this study, we investigated the effects of annealing treatment on the electrical properties of $Pb(ZrTi)O_3$ (PZT) thin films deposited on LTCC substrate. PZT thin films were deposited on Au / LTCC substrates by RF magnetron sputtering method. Then, the change of the crystallization of the films were investigated under various annealing temperatures and times. The results showed that the crystallization of the films were enhanced as increasing annealing temperatures. The film, annealed at $700^{\circ}C$, 3min, was well crystallized in the perovskite structure.

  • PDF

Fabrication of MFISFET Compatible with CMOS Process Using $SrBi_2Ta_2O_9$(SBT) Materials

  • You, In-Kyu;Lee, Won-Jae;Yang, Il-Suk;Yu, Byoung-Gon;Cho, Kyoung-Ik
    • Transactions on Electrical and Electronic Materials
    • /
    • v.1 no.1
    • /
    • pp.40-44
    • /
    • 2000
  • Metal-ferroelectric-insulator-semoiconductor field effect transistor (MFISFETs) were fabricated using CMOS processes. The Pt/SBT/NO combined layers were etched for forming a conformal gate by using Ti/Cr metal masks and a two step etching method, By the method, we were able to fabricate a small-sized gate with the dimension of $16/4{\mu}textrm{m}$ in the width/length of gate. It has been chosen the non-self aligned source and drain implantation process, We have deposited inter-layer dielectrics(ILD) by low pressure chemical vapor deposition(LPCVD) at $380^{circ}C$ after etching the gate structure and the threshold voltage of p-channel MFISFETs were about 1.0 and -2.1V, respectively. It was also observed that the current difference between the $I_{ON}$(on current) and $I_{OFF}$(off current) that is very important in sensing margin, is more that 100 times in $I_{D}-V_{G}$ hysteresis curve.

  • PDF

A Study on the Micro Machining Technology of Mold and Die (미세 절삭에 의한 금형 가공기술 개발)

  • Lee E. S.;Je T. J.;Lee S. W.;Lee D. J.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2002.02a
    • /
    • pp.231-238
    • /
    • 2002
  • 미세 절삭에 의한 마이크로 형상가공 및 이를 이용한 미세금형 가공기술개발을 위하여 절삭 공구를 이용한 기계적 미세 가공법에 대한 고찰과 더불어 shaping, end-milling, drilling 등의 가공이 가능한 기계적 미세 가공시스템을 구성하고 이를 이용한 미세 치형 그루브와 미세 격벽 등 미세 형상 구조의 금형 개발을 위한 가공실험을 수행하였다. 본 실험에서는 먼저 shaping 방식으로 세 종류의 다이아몬드 바이트를 사용하여 알루미늄, PMMA, Nickel, 황동 등의 소재에 pitch $150{\mu}m$, 높이 $8{\mu}m$ 내외의 미세 치형의 금형 코어를 가공하였고, 다음으로 Z축에 air spindle을 설치하여 $\phi0.2mm$의 end-mill(WC)을 사용하여 황동 소재에 깊이 $200{\mu}m$, 폭 $200{\mu}m,\;100{\mu}m,\;50{\mu}m,\;30{\mu}m$의 두께 변화를 주어 미세 격벽에 대한 가공실험을 하였다. 미세 구멍가공실험으로는 drilling 전용장비를 구성하여 $\phi0.6\~0.15mm$의 drill공구로 SM45C와 세라믹$(Si_3N_4-BN)$ 소재에 스텝이송방식에 의한 미세 구멍 가공 실험을 실시하였다.

  • PDF

Stepped Impedance LPF using MCSl (MCS선로를 이용한 스텝 임피던스 저역필터)

  • Rhee, Seungyeop;Lee, Seongjae;Kim, On
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.3 no.3
    • /
    • pp.153-157
    • /
    • 2008
  • The MCS(Micro-coplanar strip) line has been analyzed. The conformal mapping method is used to calculate the quasi-static effective permittivity and characteristic impedance of this MCS line. The computed results of the present work are found to be in good agreement when compared with the results obtained using commercial S/W, IE3D. And in this paper, the stepped-impedance low pass microstrip filter is designed and fabricated with MCS lines for improving the frequency responses. The LPF proposed structure has been also designed and implemented to have the sharp attenuation characteristics in stop band. The agreement between simulation and measurement results verify the implemented LPF.

  • PDF

Thermo-optic Characteristics of Micro-structured Optical Fiber Infiltrated with Mixture Liquids

  • Wang, Ran;Wang, Yuye;Miao, Yinping;Lu, Ying;Luan, Nannan;Hao, Congjing;Duan, Liangcheng;Yuan, Cai;Yao, Jianquan
    • Journal of the Optical Society of Korea
    • /
    • v.17 no.3
    • /
    • pp.231-236
    • /
    • 2013
  • We present both theoretically and experimentally the thermo-optic characteristics of micro-structured optical fiber (MOF) filled with mixed liquid. The performance of MOF depends on the efficient interaction between the fundamental mode of the transmitted light wave and the tunable thermo-optic materials in the cladding. The numerical simulation indicates that the confinement loss of MOF presents higher temperature dependence with higher air-filling ratios $d/{\Lambda}$, longer incident wavelength and fewer air holes in the cladding. For the 4cm liquid-filled grapefruit MOF, we demonstrate from experiments that different proportions of solutions lead to tunable temperature sensitive ranges. The insertion loss and the extinction ratio are 3~4 dB and approximate 20 dB, respectively. The proposed liquid-filling MOF will be developed as thermo-optic sensor, attenuator or optical switch with the advantages of simple structure, compact configuration and easy fabrication.

On-Glass Vehicle Antennas Using a Multi-Loop Structure (다중 루프 형태의 차량용 글래스 안테나)

  • Ahn, Seung-Beom;Kay, Young-Chul;Choo, Ho-Sung
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.20 no.3
    • /
    • pp.230-239
    • /
    • 2009
  • In this paper, we propose a novel on-glass antenna for FM radio reception in a recreation vehicle(RV). We use a multi-loop structure that takes advantage of a broad matching bandwidth and a high vertical radiation gain by efficiently utilizing a given space of a quarter glass in spite of the simple planar structure. Transparency of the antenna is also improved by adjusting the stripline widths based on the induced current distributions. The proposed antenna is printed on a quarter glass of a commercial vehicle and antenna performances such as the return loss and the gain are measured in a semi-anechoic chamber. The result shows the average gain of -9.67 dBi along the bore-sight direction($\theta=90^{\circ}$, $\phi=270^{\circ}$) in the FM radio band(80$\sim$l10 MHz), which is higher than a commercial monopole typed on-glass antenna($G_{ave}$=-12.49 dBi) and micro-antenna($G_{ave}$=-19.24 dBi) mounted on the roof of the RV.

Numerical Analysis on the compressive behavior of closed-cell Al foam (닫힌 셀 구조 Al 발포 재료의 압축 거동에 대한 수치해석)

  • Jeon, In-Su
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.1663-1666
    • /
    • 2007
  • The finite element method is applied to analyze the deformation mechanisms in the closed-cell Al foam under the compression. The modeling of the real cellular structure proceeds with the concept of the reverse engineering. First of all, the small, $10{\times}\;10{\times}\;10mm^3$ sized specimens of the closed-cell Al foam are prepared. The micro focus X-ray CTsystem of SHIMADZU Corp. is used to scan the full structures of the specimens. The scanned structures are converted to the geometric surfaces and solids through the software for 3-D scan data processing, RapidFormTMof INUS Tech. Inc. Then the solid meshes are directly generated on the converted geometric solids for the finite element analysis. The large elastic-plastic deformation and 3-D contact problems for the Al cellular material are considered. The clear and successful analysis for the deformation mechanisms in the closed-cell Al foam is carried out through the comparison of the numerical results in this research with the referred experimental ones.

  • PDF

Growth $Al_2$O$_3$/ZrO$_2$eutectic fibers by the micro-pulling down method and its mechanical properties (Micro-pulling down법을 이용한 $Al_2$O$_3$/ZrO$_2$eutectic fiber의 제조 및 기계적 특성)

  • ;Akira Yoshikawa;Stephen D. Durbin;;Tsuguo Fukuda;Yoshiharu Waku
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.10 no.5
    • /
    • pp.345-349
    • /
    • 2000
  • $Al_2O_3/ZrO_2$eutectic fibers were grown by micro-pulling down technique and investigated their microstructure as a function of solidification rate. $Al_2O_3/ZrO_2$eutectic fibers 0.2~2 mm in diameter and 500 mm in length have been grown with a pulling rate of 0.1~15 mm/min. The eutectic microstructures changed as a function of fulling rate from rod-shaped to cellular shape containing some thin lamellar pattern via uniform lamellar structure. Typical lamellar thickness decreased from about 380 nm to 110 nm as the pulling rate increased from 1 mm/min to 15 mm/min. The interlamellar spacing fitted with the inverse-square-root dependence on pulling rate according to $\lambda$= $1{\times}v^{-1/2}$, where $\lambda$ has the dimension in $\mu\textrm{m}$ and v is $\mu\textrm{m}$/s. Hardness value reached 13.1 GPa at 15 mm/min of pulling rate and tensile strength 900 MPa at 10 mm/min were also increased as the interlamellar spacing decreased.

  • PDF

Parametric Modeling and Numerical Simulation of 3-D Woven Materials (3차원 엮임 재료의 파라메트릭 모델링 및 수치적 재료 특성 분석)

  • Sim, Kichan;Ha, Seung-Hyun
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.33 no.5
    • /
    • pp.331-338
    • /
    • 2020
  • In this study, the characteristic of a 3-D micro-woven material, which is one of the newly developed periodic open-cell structure, is analyzed through various computational simulations. To increase the accuracy of the numerical simulations, the distance between each directional wire is parameterized using six design variables, and its model geometry is precisely discretized using tetrahedron elements. Using the improved computational model, the material properties of the mechanical, thermal, and fluidic behavior are investigated using commercial software and compared with the previous experimental results. By changing the space between the x- and y-directional wires, a parametric test is performed to determine the tendency of the change in the material properties. In addition, the correlation between two different material properties is investigated using the Ashby chart. The result can further be used in determining the optimal pattern and wire spacing in 3-D micro-woven materials.