• Title/Summary/Keyword: 3D map

Search Result 1,480, Processing Time 0.029 seconds

3D Map-Building using Histogramic In-Motion Mapping in the Eyebot (HIMM을 이용한 3차원 지도작성)

  • 정현룡;김영배
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.1127-1130
    • /
    • 2003
  • This paper introduces histogramic in-motion mapping for real-time map building with the Eyebot in motion. A histogram grid used in HIMM is updated through three PSD sensors. HIMM makes it possible to make fast map-building and avoid obstacles in real-time. Fast map-building allows the robot to immediately use the mapped information in real-time obstacle-avoidance algorithms. HIMM has been tested on the Eyebot. The Eyebot sends PSD data to computer and computer builds a 3D-Map based on PSD data.

  • PDF

Implementation of 3D Height Map Tool for SnowBoard Game (스노우보드 게임을 위한 3D Height Map Tool 구현)

  • Kim Eun-Ju
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2006.05a
    • /
    • pp.177-180
    • /
    • 2006
  • 체감형 게임을 하기 위한 지형 인터페이스 모델로써 스노우보드 게임에서 사용되는 지형 Map Tool을 구현한다. 게임에 쓰이게 될 3D 지형을 하이트 2D 맵 편직기만을 이용해서 만들기는 힘들며 이러한 방법은 지형의 세밀함이 떨어지고 게임상에서 계속 불러들여 확인하는 것은 비효율적이다. 하이트맵을 3D 상에서 직접 불러와 편집을 하고 저장할 수 있게 된다면 훨씬 효율적이며 퀄리티를 높일 수 있을 것이다.

  • PDF

Continuous Perspective Query Processing for 3D Objects on Road Networks (도로네트워크 기반의 3차원 객체를 위한 연속원근질의처리)

  • Kim, Joon-Seok;Li, Ki-Joune;Jang, Byung-Tae;You, Jae-Joon
    • Spatial Information Research
    • /
    • v.15 no.2
    • /
    • pp.95-109
    • /
    • 2007
  • Recently people have been offered location based services on road networks. The navigation system, one of applications, serves to find the nearest gas station or guide divers to the shortest path based 2D map. However 3D map is more important media than 2D map to make sense friendly for the real. Although 3D map's data size is huge, portable devices' storage space is small. In this paper, we define continuous perspective queries to support 3D map to mobile user on road networks and propose this queries processing method.

  • PDF

Map Building Based on Sensor Fusion for Autonomous Vehicle (자율주행을 위한 센서 데이터 융합 기반의 맵 생성)

  • Kang, Minsung;Hur, Soojung;Park, Ikhyun;Park, Yongwan
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.22 no.6
    • /
    • pp.14-22
    • /
    • 2014
  • An autonomous vehicle requires a technology of generating maps by recognizing surrounding environment. The recognition of the vehicle's environment can be achieved by using distance information from a 2D laser scanner and color information from a camera. Such sensor information is used to generate 2D or 3D maps. A 2D map is used mostly for generating routs, because it contains information only about a section. In contrast, a 3D map involves height values also, and therefore can be used not only for generating routs but also for finding out vehicle accessible space. Nevertheless, an autonomous vehicle using 3D maps has difficulty in recognizing environment in real time. Accordingly, this paper proposes the technology for generating 2D maps that guarantee real-time recognition. The proposed technology uses only the color information obtained by removing height values from 3D maps generated based on the fusion of 2D laser scanner and camera data.

Localization of a Monocular Camera using a Feature-based Probabilistic Map (특징점 기반 확률 맵을 이용한 단일 카메라의 위치 추정방법)

  • Kim, Hyungjin;Lee, Donghwa;Oh, Taekjun;Myung, Hyun
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.21 no.4
    • /
    • pp.367-371
    • /
    • 2015
  • In this paper, a novel localization method for a monocular camera is proposed by using a feature-based probabilistic map. The localization of a camera is generally estimated from 3D-to-2D correspondences between a 3D map and an image plane through the PnP algorithm. In the computer vision communities, an accurate 3D map is generated by optimization using a large number of image dataset for camera pose estimation. In robotics communities, a camera pose is estimated by probabilistic approaches with lack of feature. Thus, it needs an extra system because the camera system cannot estimate a full state of the robot pose. Therefore, we propose an accurate localization method for a monocular camera using a probabilistic approach in the case of an insufficient image dataset without any extra system. In our system, features from a probabilistic map are projected into an image plane using linear approximation. By minimizing Mahalanobis distance between the projected features from the probabilistic map and extracted features from a query image, the accurate pose of the monocular camera is estimated from an initial pose obtained by the PnP algorithm. The proposed algorithm is demonstrated through simulations in a 3D space.

A Study on the Construction of a Drone Safety Flight Map and The Flight Path Search Algorithm (드론 안전비행맵 구축 및 비행경로 탐색 알고리즘 연구)

  • Hong, Ki Ho;Won, Jin Hee;Park, Sang Hyun
    • Journal of Korea Multimedia Society
    • /
    • v.24 no.11
    • /
    • pp.1538-1551
    • /
    • 2021
  • The current drone flight plan creation creates a flight path point of two-dimensional coordinates on the map and sets an arbitrary altitude value considering the altitude of the terrain and the possible flight altitude. If the created flight path is a simple terrain such as a mountain or field, or if the user is familiar with the terrain, setting the flight altitude will not be difficult. However, for drone flight in a city where buildings are dense, a safer and more precise flight path generation method is needed. In this study, using high-precision spatial information, we construct a drone safety flight map with a 3D grid map structure and propose a flight path search algorithm based on it. The safety of the flight path is checked through the virtual drone flight simulation extracted by searching for the flight path based on the 3D grid map created by setting weights on the properties of obstacles and terrain such as buildings.

A 2D / 3D Map Modeling of Indoor Environment (실내환경에서의 2 차원/ 3 차원 Map Modeling 제작기법)

  • Jo, Sang-Woo;Park, Jin-Woo;Kwon, Yong-Moo;Ahn, Sang-Chul
    • 한국HCI학회:학술대회논문집
    • /
    • 2006.02a
    • /
    • pp.355-361
    • /
    • 2006
  • In large scale environments like airport, museum, large warehouse and department store, autonomous mobile robots will play an important role in security and surveillance tasks. Robotic security guards will give the surveyed information of large scale environments and communicate with human operator with that kind of data such as if there is an object or not and a window is open. Both for visualization of information and as human machine interface for remote control, a 3D model can give much more useful information than the typical 2D maps used in many robotic applications today. It is easier to understandable and makes user feel like being in a location of robot so that user could interact with robot more naturally in a remote circumstance and see structures such as windows and doors that cannot be seen in a 2D model. In this paper we present our simple and easy to use method to obtain a 3D textured model. For expression of reality, we need to integrate the 3D models and real scenes. Most of other cases of 3D modeling method consist of two data acquisition devices. One for getting a 3D model and another for obtaining realistic textures. In this case, the former device would be 2D laser range-finder and the latter device would be common camera. Our algorithm consists of building a measurement-based 2D metric map which is acquired by laser range-finder, texture acquisition/stitching and texture-mapping to corresponding 3D model. The algorithm is implemented with laser sensor for obtaining 2D/3D metric map and two cameras for gathering texture. Our geometric 3D model consists of planes that model the floor and walls. The geometry of the planes is extracted from the 2D metric map data. Textures for the floor and walls are generated from the images captured by two 1394 cameras which have wide Field of View angle. Image stitching and image cutting process is used to generate textured images for corresponding with a 3D model. The algorithm is applied to 2 cases which are corridor and space that has the four wall like room of building. The generated 3D map model of indoor environment is shown with VRML format and can be viewed in a web browser with a VRML plug-in. The proposed algorithm can be applied to 3D model-based remote surveillance system through WWW.

  • PDF

Creation of 3D Maps for Satellite Communications to Support Ambulatory Rescue Operations

  • Nakajima, Isao;Nawaz, Muhammad Naeem;Juzoji, Hiroshi;Ta, Masuhisa
    • Journal of Multimedia Information System
    • /
    • v.6 no.1
    • /
    • pp.23-30
    • /
    • 2019
  • A communications profile is a system that acquires information from communication links to an ambulance or other vehicle moving on a road and compiles a database based on this information. The equipment (six sets of HDTVs, fish-eye camera, satellite antenna with tracking system, and receiving power from the satellite beacon of the N-star) mounted on the roof of the vehicle, image data were obtained at Yokohama Japan. From these data, the polygon of the building was actually produced and has arranged on the map of the Geographical Survey Institute of a 50 m-mesh. The optical study (relationship between visibility rate and elevation angle) were performed on actual data taken by fish-eye lens, and simulated data by 3D-Map with polygons. There was no big difference. This 3D map system then predicts the communication links that will be available at a given location. For line-of-sight communication, optical analysis allows approximation if the frequency is sufficiently high. For non-line-of-sight communication, previously obtained electric power data can be used as reference information for approximation in certain cases when combined with predicted values calculated based on a 3D map. 3D maps are more effective than 2D maps for landing emergency medical helicopters on public roadways in the event of a disaster. Using advanced imaging technologies, we have produced a semi-automatic creation of a high-precision 3D map at Yokohama Yamashita Park and vicinity and assessed its effectiveness on telecommunications and ambulatory merits.

A Study on 2D/3D Map Navigation System Based on Virtual Reality (VR 기반 2D/3D Map Navigation 시스템에 관한 연구)

  • Kwon Oh-Hyun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.10 no.5
    • /
    • pp.928-933
    • /
    • 2006
  • This paper aims to build a 2D/3D map navigation that the user can efficiently operate in terms of feeding attribute information after securing 2D/3D space data. This system provides 2D/3D screen navigation that supports variety of operational visual effects and displays the location that the user is retrieving. Also it presents picture information of buildings with higher resolution and URL, name of store, phone number, other related information. Effectiveness of this system is as follows: first, development and distribution of a new technology of 2D/3D spatial database that changes the previous 2D/3D based system concept to the 2D/3D based one. Second, increase of developmental productivity by utilizing the integrated 2D/3D spatial database for developing various interfaces. Finally, it provides security of the preemptive technological position with world class domestic 2D/3D spatial database technologies.

Motion Planning for Legged Robots Using Locomotion Primitives in the 3D Workspace (3차원 작업공간에서 보행 프리미티브를 이용한 다리형 로봇의 운동 계획)

  • Kim, Yong-Tae;Kim, Han-Jung
    • The Journal of Korea Robotics Society
    • /
    • v.2 no.3
    • /
    • pp.275-281
    • /
    • 2007
  • This paper presents a motion planning strategy for legged robots using locomotion primitives in the complex 3D environments. First, we define configuration, motion primitives and locomotion primitives for legged robots. A hierarchical motion planning method based on a combination of 2.5 dimensional maps of the 3D workspace is proposed. A global navigation map is obtained using 2.5 dimensional maps such as an obstacle height map, a passage map, and a gradient map of obstacles to distinguish obstacles. A high-level path planner finds a global path from a 2D navigation map. A mid-level planner creates sub-goals that help the legged robot efficiently cope with various obstacles using only a small set of locomotion primitives that are useful for stable navigation of the robot. A local obstacle map that describes the edge or border of the obstacles is used to find the sub-goals along the global path. A low-level planner searches for a feasible sequence of locomotion primitives between sub-goals. We use heuristic algorithm in local motion planner. The proposed planning method is verified by both locomotion and soccer experiments on a small biped robot in a cluttered environment. Experiment results show an improvement in motion stability.

  • PDF