• Title/Summary/Keyword: 3D kinematics

Search Result 219, Processing Time 0.03 seconds

In Vivo Kinematics of a Mobile-bearing Total Knee Prosthesis (이동베어링형 인공무릎전치환관절의 생체내의 운동)

  • Lee, Yeon-Soo;Park, Sang-Jin;Song, Eun-Kyoo
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.1473-1474
    • /
    • 2008
  • In the total knee arthroplasty (TKA), kinematic benefic of a mobile-bearing total knee prosthesis is still arguing. Main reasons for implant failure are loosening and polyethylene wear and should be solved with new designs with mob ile bearings. The kinematics of the knee prosthesis also affects the implant failure. Recently, a second generation of p rostheses with a mobile-bearing was developed. The current study aimed to assess the kinematic path of the 2nd generation mobile knee prosthesis compared to the normal knees. Using 3D/2D registration method, CT-derived 3D knee models were fitted to sequential 2D X-ray images during knee flexion. 3D kinematics of the femur and the tibia were analyzed. The 2nd generation mobile-bearing TKA prosthesis (e.motion, Aesculap, Germany) knees showed less external rotation and knee flexion range compared to the normal knee, but the trend of external rotation was similar each other.

  • PDF

An Effective Implementation of Inverse Kinematics Module through Geometric Interpretation (기하학 해석을 통한 역운동학 모듈의 효과적인 구현)

  • Kang, Jong-Ho;Kim, Kyung-Sik;Yoo, Kwan-Hee
    • Journal of Korea Game Society
    • /
    • v.4 no.4
    • /
    • pp.19-24
    • /
    • 2004
  • In this paper, we have proposed a new geometric solution of inverse kinematics of high instinct, while traditional solutions of inverse kinematics requires high level of mathematical knowledge. It was possible to use the inverse kinematics without mathematical knowledge because 3D vectors of directions of folded bones could be calculated by our method in the inverse kinematic model of two bones. The proposed method can be utilized easily by graphic designers who have little knowledge of mathematics of inverse kinematics

  • PDF

Development of a 3D Off-Line Graphic Simulator for Industrial Robot (산업용 로봇의 3차원 오프라인 그래픽 시뮬레이터 개발)

  • 이병국
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1999.10a
    • /
    • pp.565-570
    • /
    • 1999
  • In this paper, we developed a windows 95 version Off-Line Programming system which can simulate a Robot model in 3D Graphics space. 4axes SCARA Robot (especially FARA SM5) was adopted as an objective model. Forward kinematics, inverse kinematics and robot dynamics modeling were included in the developed program. The interface between users and the OLP system in the Windows 95's GUI environment was also studied. The developing language is Microsoft Visual C++. Graphic libraries, OpenGL, by silicon Graphics, Inc. were utilized for 3D Graphics.

  • PDF

Kinematics Analysis of the Milti-joint Robot Manipulator for an Automatic Milking System (자동 착유시스템을 위한 다관절 로봇 머니퓰레이터의 기구학적 분석)

  • Kim, W.;Lee, D.W.
    • Journal of Animal Environmental Science
    • /
    • v.13 no.3
    • /
    • pp.179-186
    • /
    • 2007
  • The purpose of this study was kinematics analysis of the multi-joint robot manipulator for an automatic milking system. The multi-joint robot manipulator was consisted of one perpendicular link and four revolution links to attach simultaneously four teat cups to four teats of a milking cow. The local coordinates of each joints on the robot manipulator was given for kinematics analysis. The transformation of manipulator was able to be given by kinematics using Denavit-Hatenberg parameters. The value of inverse kinematics which was solved by two geometric solution methods. The kinematics solutions was verified by AutoCAD, MATLAB, simulation program was developed using Visual C++.

  • PDF

An Implementation of Real-time Motion Restoration System based on Inverse Kinematics (역운동학을 이용한 실시간 동작 복원 시스템 구현)

  • Lee, R.H.;Lee, C.W.
    • Journal of Korea Multimedia Society
    • /
    • v.17 no.6
    • /
    • pp.741-750
    • /
    • 2014
  • This paper presents a real-time motion restoration system for people who need remedial exercise of musculoskeletal based on Inverse Kinematics. A new approach is suggested to recognize a gesture based on restored human motion which is calculated the 3D positions of intermediate joints using 3D positions of body features estimated from images. For generating the 3D candidate positions of intermediate joints which cannot be extracted from images, we apply an Inverse Kinematics theory to compute the target position of intermediate joints. And we can reduce the number of candidate positions by applying the various physical constraints of body. Finally, we can generate the more accurate final position using the Kalman filter for a motion tracking and the relationship between the previous frame information and the candidate positions. The system provide motion information which are rotation angle and height in real-time, therefore the rehabilitation exercises can be performed based on the information and figured out proper exercise for individual status.

Inverse and Forward Kinematics Analysis of 6 DOF Multi Axis Simulation Table and Verification (6 자유도 다축 시뮬레이션 테이블의 역.순기구학 해석 및 검증)

  • Jin, Jae-Hyun;Jeon, Seung-Bae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.32 no.2
    • /
    • pp.202-208
    • /
    • 2008
  • A 6 DOF Multi axis simulation table (MAST) is used to perform vibration and fatigue tests for parts or assemblies of automobiles, aircraft, or other systems. It consists of a table and 6 linear actuators. For its attitude control, we have to adjust the lengths of 6 actuators properly. The system is essentially a parallel mechanism. Three actuators are connected to the table directly and other three actuators are connected indirectly. Because of these, the MAST shows also a serial mechanism#s property: the inverse kinematics is more complicated than a pure parallel mechanism and each actuator can operate independently. The authors have performed a kinematics analysis of the 6 DOF MAST. We have presented an analytical and a numerical solution for the inverse and forward kinematics, and we have verified the solutions by a 3D CAD software.

Effects of Customized 3D-printed Insoles on the Kinematics of Flat-footed Walking and Running

  • Joo, Ji-Yong;Kim, Young-Kwan
    • Korean Journal of Applied Biomechanics
    • /
    • v.28 no.4
    • /
    • pp.237-244
    • /
    • 2018
  • Objective: Flat-footed people struggle with excessive ankle joint motion during walking and running. This study aimed to investigate the effects of customized three-dimensional 3D-printed insoles on the kinematics of flat-footed people during daily activities (walking and running). Method: Fifteen subjects (height, $169.20{\pm}2.61cm$; age, $22.87{\pm}8.48years$; navicular bone height, $13.2{\pm}1.00mm$) diagnosed with flat feet in a physical examination participated in this study. Results: The customized 3D-printed insoles did not significantly affect 3D ankle joint angles under walking and running conditions. However, they shifted the trajectory of the center of pressure (COP) laterally during fast walking, which enhanced the load distribution on the foot during the stance phase. Conclusion: The customized 3D-printed insoles somewhat positively affected the pressure distribution of flat-footed people by changing the COP trajectory. Further research including comparisons with customized commercial insoles is needed.

A Study on Various Rigging Contents Production using Inverse Kinematics techniqe (역운동학 기법을 이용한 다양한 리깅 콘텐츠 제작 활용에 관한 연구)

  • Joo, Heon-Sik
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2015.01a
    • /
    • pp.187-188
    • /
    • 2015
  • 본 논문에서는 IK 리깅을 이용한 캐릭터 콘텐츠 영상 제작을 제안한다. IK 콘텐츠를 2D와 3D로 제작할 수 있는데 본 연구에서는 2D로 캐릭터의 이미지를 레이어로 제작하고, IK의 bone은 스크립트로 생성하였다. 따라서 인체의 각 관절에 해당하는 부위에 리깅을 부여하여 자유로운 캐릭터를 제작하였고, 이러한 캐릭터의 제작은 모션 캡처 제작비용에 비해서 상당히 비용부담이 적은 경제성을 나타내고, 다양한 영역에서 활용 할 수 있다고 사료한다.

  • PDF

Development of 3D Off-line Simulator for Industrial Robots (산업용 로봇의 3차원 오프라인 시뮬레이터 개발)

  • 김홍래;신행봉;한성현
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.1731-1734
    • /
    • 2003
  • We propose a unmaned integrating control system based-on Windows XP version Off-Line Programming System which can simulate a Robot model in 3D Graphics space in this paper. The robot with 4 and 6 axes modeled SM5 and AM1 respectively were adopted as an objective model. Forward kinematics, inverse kinematics and robot dynamics modeling were included in the developed off-line program. The interface between users and the off-line programming system in the Windows XP's graphic user interface environment was also studied. The developing language is Microsoft Visual C++. Graphic libraries, OpenGL, by silicon Graphics, Inc. were utilized for 3D Graphics.

  • PDF

Single-Plane Fluoroscopic Three-Dimensional Kinematics of Normal Stifle Joint in Beagle Dogs

  • Kim, Hyungkyoo;Jeong, Jaemin;Seo, Jeonhee;Lee, Young-Won;Choi, Ho-Jung;Park, Jiyoung;Jeong, Seong Mok;Lee, Haebeom
    • Journal of Veterinary Clinics
    • /
    • v.34 no.5
    • /
    • pp.318-324
    • /
    • 2017
  • The objective of this study was to establish kinematic reference ranges for the femorotibial (FT) joint and the patellofemoral (PF) joint in healthy small-breed dogs by measuring 3D kinematics at the walk. Single-plane fluoroscopy was used to image the stifle joints of five healthy beagle dogs while the dogs were walking. 3D bone models of the femur, patella, and tibia were reconstructed by computed tomography scanning of the beagle dogs' hind limbs. The shape-matching technique was used to measure kinematic data from the fluoroscopic images and the 3D bone models. The cranial translation of the tibia during walking was inversely proportional to the FT joint flexion. There were significant correlations between the patellar motion and the tibial motion. The FT joint flexion had a strong correlation with the patellar proximodistal translation and flexion. Additionally, the tibial mediolateral translation had a strong correlation with the patellar shift and tilt. In this study, normal in vivo 3D FT joint and PF joint kinematics were demonstrated, and the average kinematic parameters were determined in walking beagle dogs.