• Title/Summary/Keyword: 3D information structure and transmission

Search Result 88, Processing Time 0.019 seconds

Design of High Efficiency and Linearity Doherty Power Amplifier Using Adaptive Bias Technique and DGS for Wibro Applications (적응형 바이어스 기법과 DGS를 이용한 와이브로용 고효율 고선형 도허티 전력증폭기 설계)

  • Oh, Chung-Gyun;Son, Sung-Chan
    • Journal of The Institute of Information and Telecommunication Facilities Engineering
    • /
    • v.8 no.1
    • /
    • pp.12-17
    • /
    • 2009
  • In this paper, We play it for the purpose of study about the power amplifier which applied DGS and adaptive bias circuit structure to general Doherty amplifier for the efficiency of a RF power amplifier and a linearity improvement in the WiBro band. As for the IMD3, 3.4dBc was improved with -26.3dBc when we did the measurement result existing Doherty power amplifier and comparison of the Doherty power amplifier which applied an adaptive bias circuit and the DGS which proposed in this paper, and the mean power efficiency verified what was increased in 37%. Also, we were able to know PAE of 36.6% with output power 34.0dBm in P1dB when magnitude of an input signal was 25.6dBm. we did 6dB back off in output P1dB in order to confirm the ACPR which was a nonlinear characteristic and measured the ACPR. we showed the -34.55dBc which was a value of -34.5dBc or below in the 4.77MHz off-set that was a transmission standard. Therefore, we were able to know that we were satisfied with a spectrum mask standard.

  • PDF

10Gbit/s AlGaAs/GaAs HBT limiting amplifier (AlGaAs/GaAs HBT를 사용한 10Gbit/s 리미팅증폭기)

  • 곽봉신;박문수
    • Journal of the Korean Institute of Telematics and Electronics D
    • /
    • v.34D no.7
    • /
    • pp.15-22
    • /
    • 1997
  • A 10Gbit/s limiting amplifier IC for optical transmission system was implemented with AlGaAs HBT (heterojunction bipolar transistor) technology. HBTs with 2x10.mu. $m^{2}$ and 6x20.mu. $m^{2}$ emitter size were used. The HBT structures are based on metal-organic chemical vapor deposition (MOCVD) epitxy and employ a mesa structure with self-aligned emitter/base and sidewall dielectric passivation. IC was designed to support differnetial input and output. Small signal performance of the packaged IC showed 26dB gain and $f_{3dB}$ of 8GHz. A single ouput has 800m $V_{p-p}$ swing with more than 26dB dynamic range. The performance of the limiting amplifier was verified through single mode fiber320km transmission link test.est.

  • PDF

A Linearity Improved Power Amplifier using Bandpass Filter Based on Composite Right-/Left-Handed Structure (CRLH 구조의 대역통과여파기를 이용한 전력증폭기의 선형성 개선에 관한 연구)

  • Kim, Hyoung-Jun;Seo, Chul-Hun
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.48 no.1
    • /
    • pp.92-96
    • /
    • 2011
  • In this paper, we present a bandpass filter (BPF) based on composite right-/left-handed (CRLH) structure for improving the linearity of the power amplifier. The proposed BPF consist of the inter-digit signal line on the top plane and the complementary split ring resonator (CSRR) on the bottom plane, respectively. The insertion loss is minimized at operation frequency and the 2nd harmonic is suppressed by the bandpass filter using the CRLH structure, respectively. The output power of 33 dBm, the 2nd harmonic of -53.527 dBc, 3rd inter-modulation distortion of -36.16 dBc was obtained at 2.14 GHz, respectively. Compared with the reference power amplifier, the 2nd harmonic of 16 dB and 3rd inter-modulation distortion of 12 dB have been improved at 2.14 GHz, respectively.

Geometric Kernel Design of the Web-Viewer for the PDM Based Assembly DMU (PDM기반 조립체 DMU를 위한 웹뷰어 형상커널의 설계)

  • Song, In-Ho;Chung, Sung-Chong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.31 no.2 s.257
    • /
    • pp.260-268
    • /
    • 2007
  • Demand for the use of 3D CAD DMU systems over the Internet environment has been increased. However, transmission of commercial 3D kernels has delayed the communication effectiveness due to the kernel size. Light weight CAD geometric kernel design methodology is required for rapid transmission in the distributed environment. In this paper, an assembly data structure suitable for the top-down and bottom-up assembly models has been constructed. Part features are stored without a hierarchy so that they are created and saved in no particular order. In particular, this paper proposes a new assembly representation model, called multi-level assembly representation (MAR), for the PDM based assembly DMU system. Since the geometric kernel retains assembly hierarchy and topological information, it is applied to the web-viewer for the PDM based DMU system. Effectiveness of the proposed geometric kernel is confirmed through various case studies.

A RF Microstrip Balun Using a Wilkinson Divider and 3-dB Quadrature Couplers (월킨슨 분배기와 90도 위상차 분배기를 이용한 RF 마이크로스트립 발룬)

  • Park Ung-Hee;Lim Jong-Sik;Kim Joung-Myoun
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.16 no.3 s.94
    • /
    • pp.246-252
    • /
    • 2005
  • A RF microstrip balun having low transmission loss for the balanced receiving dipole antenna is designed and fabricated using a three-section Wilkinson divider and two 3-dB quadrature couplers. It considers two types of the three-section Wilkinson dividers, the Cohn's optimum three-section structure and the miniaturized three-section structure, for wideband power splitting. Also, two 3-dB quadrature couplers for 180 degrees of phase difference adopt a twist-wire coaxial cable. The fabricated first balun having the Cohn's optimum three-section Wilkinson divider has 0.5 dB of transmission loss, $\pm$0.2 dB of amplitude imbalance, and 180$\pm$2.3 degrees of phase imbalance over 400 to 1000 MHz by measurement. The second one using the miniaturized three-section Wilkinson divider shows 1.0 dB of transmission loss, $\pm$0.7 dB of amplitude imbalance, and 180$\pm$8.8 degrees of phase imbalance over the same frequency band.

Improved Power Performances of the Size-Reduced Amplifiers using Defected Ground Structure (결함 접지 구조를 이용하여 소형화한 증폭기의 개선된 전력 성능)

  • Lim, Jong-Sik;Jeong, Yong-Chae;Han, Jae-Hee;Lee, Young-Taek;Park, Jun-Seok;Ahn, Dal;Nam, Sang-Wook
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.13 no.8
    • /
    • pp.754-763
    • /
    • 2002
  • This paper discusses the improved power performances of the size-reduced amplifier using defected ground structure (DGS). The slow-wave effect and enlarged electrical length occur due to the additional equivalent circuit elements of DGS. Using these properties, it is possible to reduce the length of transmission lines in order to keep the same original electrical lengths by inserting DGS on the ground plane. The matching and performances of the amplifier are preserved even after DGS patterns have been inserted. While there is no loss in the size-reduced transmission lines at the operating frequency, but there exists loss to some extent at harmonic frequencies. This leads to the more excellent inherent capability of harmonic rejection of the size-reduced amplifier. Therefore, it is expected tile harmonics of the size-reduced amplifier are smaller than those of the original amplifier. The measured second harmonic, third order intermodulation distortion (IMD3), and adjacent channel power ratio (ACPR) of the size-reduced amplifier are smaller than those of the original amplifier by 5 dB, 2~6 dB, and 1~4 dB, respectively, as expectation.

RECENT R&D ACTIVITIES ON STRUCTURAL HEALTH MONITORING FOR CIVIL INFRA-STRUCTURES IN KOREA

  • Yun, Chung-Bang
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.11a
    • /
    • pp.21-32
    • /
    • 2003
  • Developments and applications of the structural health monitoring (SHM) systems have become active particularity for long-span bridges in Korea. They are composed of sensors, data acquisition system, data transmission system, information processing, damage assessment, and information management. In this paper, current status of research and application activities on SHM systems for civil infra-structures in Korea are briefly introduced by 4 parts: (1) current status of bridge monitoring systems on existing and newly constructed bridges, (2) research and development activities on smart sensors such as optical fiber sensors and piezo-electric sensors, (3) structural damage detection methods using measured data, and (4) a test road project for pavement design verification and enhancement by the Korea Highway Corporation. Finally the R&D activities of a new engineering research center entitled Smart Infra-Structure Technology Center at Korea Advanced Institute of Science and Technology are also briefly described.

  • PDF

Improvement of Direct-Modulation Performances of Semiconductor Lasers by using Dual-Electrode Structure (이중 전극 구조를 이용한 반도체 레이저의 직접 변조 성능 향상)

  • Sung, Hyuk-Kee
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.15 no.3
    • /
    • pp.654-659
    • /
    • 2011
  • We propose a novel method to reduce laser chirp and improve modulation performance in semiconductor laser by using dual-electrode structure. Dual-electrode structure is realized by segmenting a electrode on top of gain medium, as was the case of edge emitting laser diode, into electrically isolated two electrodes. By using the proposed structure, we have experimentally achieved a reduction of laser spectral width of 0.23 nm and an improvement of 2.5-dB receiver sensitivity at an 80-km fiber transmission for 10-Gbps NRZ (non-return-to zero) data stream.

Serially Concatenated Space-Time Code using Iterative Decoding of High Data Rate Wireless Communication (고속 무선 통신을 위한 반복 복호 직렬 연쇄 시.공간 부호)

  • 김웅곤;구본진;양하영;강창언;홍대식
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.25 no.4A
    • /
    • pp.519-527
    • /
    • 2000
  • This paper suggests and analyzes the Serially Concatenated Space-Time Code(SCSTC) with the possibility of a efficient high-speed transmission in a band limited channel. The suggested code has a structure that uses the interleaver to connect the space-time code as an inner code and the convolutional code as a outer code serially. This code keeps the advantage of high-speed transmission and also has the high BER performance. The performance of the suggested system is compared with the conventional bandwidth efficient trellis coded modulation, such as a Serially Concatenated Trellis Coded Modulation (SCTCM) and a Turbo-Trellis Coded Modulation(Turbo-TCM). The results show that the suggested system has a 2.8dB and 3dB better BER performance than SCTCM and Turbo-TCM respectively in case of the transmission rate 2b/s/Hz in fading channel.

  • PDF

Reduced Hybrid Ring Coupler Using Surface Micromachining Technology for 94-GHz MMIC Applications

  • Uhm, Won-Young;Beak, Tae-Jong;Ryu, Keun-Kwan;Kim, Sung-Chan
    • Journal of information and communication convergence engineering
    • /
    • v.14 no.4
    • /
    • pp.246-251
    • /
    • 2016
  • In this study, we developed a reduced 94 GHz hybrid ring coupler on a GaAs substrate in order to demonstrate the possibility of the integration of various passive components and MMICs in the millimeter-wave range. To reduce the size of the hybrid ring coupler, we used multiple open stubs on the inside of the ring structure. The chip size of the reduced hybrid ring coupler with multiple open stubs was decreased by 62% compared with the area of the hybrid ring coupler without open stubs. Performance in terms of the loss, isolation, and phase difference characteristics exhibited no significant change after the use of the multiple open stubs on the inside of the ring structure. The reduced hybrid ring coupler showed excellent coupling loss of $3.87{\pm}0.33dB$ and transmission loss of $3.77{\pm}0.72dB$ in the measured frequency range of 90-100 GHz. The isolation and reflection were -48 dB and -32 dB at 94 GHz, respectively. The phase differences between two output ports were $180^{\circ}{\pm}1^{\circ}$ at 94 GHz.