• Title/Summary/Keyword: 3D image simulation

Search Result 417, Processing Time 0.024 seconds

3D Face Modeling using Face Image

  • Kim, Sanghyuk;Ban, Yuseok;Park, Changhyun;Lee, Sangyoun
    • Journal of International Society for Simulation Surgery
    • /
    • v.2 no.1
    • /
    • pp.10-12
    • /
    • 2015
  • Purpose It has been stated that patient satisfaction is the crucial factor for determining success in plastic surgery. The convergence of medical science and computer vision has made easier to satisfy patients who wants to have plastic surgery. In this paper, we try to apply 3D face modeling in plastic surgical area. Materials and Methods The author introduces a method for accurate 3D face modeling techniques using a statistical model-based 3D face modeling approach in a mirror system. Results We could successfully obtain highly accurate 3D face shape results. Conclusion The method suggested could be used for acquiring 3D face models from 2D face image and the result obtained from this could be effectively used for plastic surgical areas.

Reconstructing 3-D Facial Shape Based on SR Imagine

  • Hong, Yu-Jin;Kim, Jaewon;Kim, Ig-Jae
    • Journal of International Society for Simulation Surgery
    • /
    • v.1 no.2
    • /
    • pp.57-61
    • /
    • 2014
  • We present a robust 3D facial reconstruction method using a single image generated by face-specific super resolution technique. Based on the several consecutive frames with low resolution, we generate a single high resolution image and a three dimensional facial model based on it. To do this, we apply PME method to compute patch similarities for SR after two-phase warping according to facial attributes. Based on the SRI, we extract facial features automatically and reconstruct 3D facial model with basis which selected adaptively according to facial statistical data less than a few seconds. Thereby, we can provide the facial image of various points of view which cannot be given by a single point of view of a camera.

A Comparison of System Performances Between Rectangular and Polar Exponential Grid Imaging System (POLAR EXPONENTIAL GRID와 장방형격자 영상시스템의 영상분해도 및 영상처리능력 비교)

  • Jae Kwon Eem
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.31B no.2
    • /
    • pp.69-79
    • /
    • 1994
  • The conventional machine vision system which has uniform rectangular grid requires tremendous amount of computation for processing and analysing an image especially in 2-D image transfermations such as scaling, rotation and 3-D reconvery problem typical in robot application environment. In this study, the imaging system with nonuiformly distributed image sensors simulating human visual system, referred to as Ploar Exponential Grid(PEG), is compared with the existing conventional uniform rectangular grid system in terms of image resolution and computational complexity. By mimicking the geometric structure of the PEG sensor cell, we obtained PEG-like images using computer simulation. With the images obtained from the simulation, image resolution of the two systems are compared and some basic image processing tasks such as image scaling and rotation are implemented based on the PEG sensor system to examine its performance. Furthermore Fourier transform of PEG image is described and implemented in image analysis point of view. Also, the range and heading-angle measurement errors usually encountered in 3-D coordinates recovery with stereo camera system are claculated based on the PEG sensor system and compared with those obtained from the uniform rectangular grid system. In fact, the PEC imaging system not only reduces the computational requirements but also has scale and rotational invariance property in Fourier spectrum. Hence the PEG system has more suitable image coordinate system for image scaling, rotation, and image recognition problem. The range and heading-angle measurement errors with PEG system are less than those of uniform rectangular rectangular grid system in practical measurement range.

  • PDF

Block-matching and 3D filtering algorithm in X-ray image with photon counting detector using the improved K-edge subtraction method

  • Kyuseok Kim;Youngjin Lee
    • Nuclear Engineering and Technology
    • /
    • v.56 no.6
    • /
    • pp.2057-2062
    • /
    • 2024
  • Among photon counting detector (PCD)-based technologies, the K-edge subtraction (KES) method has a very high material decomposition efficiency. Yet, since the increase in noise in the X-ray image to which the KES method is applied is inevitable, research on image quality improvement is essential. Here, we modeled a block-matching and 3D filtering (BM3D) algorithm and applied it to PCD-based X-ray images with the improved KES (IKES) method. For PCD modeling, Monte Carlo simulation was used, and a phantom composed of iodine substances with different concentrations was designed. The IKES method was modeled by adding a log term to KES, and the X-ray image used for subtraction was obtained by applying the 3.0 keV range based on the K-edge region of iodine. As a result, the IKES image using the BM3D algorithm showed the lowest normalized noise power spectrum value. In addition, we confirmed that the contrast-to-noise ratio and no-reference-based evaluation results when the BM3D algorithm was applied to the IKES image were improved by 29.36 % and 20.56 %, respectively, compared to the noisy image. In conclusion, we demonstrated that the IKES imaging technique using a PCD-based detector and the BM3D algorithm fusion technique were very efficient for X-ray imaging.

Optimization of the Cloth Simulation Pipeline in Production of 3D Computer Animation (3D 컴퓨터 애니메이션 제작에서 Cloth Simulation 을 위한 제작파이프라인의 최적화)

  • Kwak, Dong-Min;Choi, Chul-Yong;Kim, Ki-Hong;Lee, Dong-Hoon
    • The Journal of the Korea Contents Association
    • /
    • v.9 no.8
    • /
    • pp.198-207
    • /
    • 2009
  • Recently, it was possible to represent the realistic clothes in the cloth simulation along with growth of 3D computer animation such as visual contents. In addition, because of the development of H/W(Hardware) and S/W(Software), the accessibility and participation are growing. However, in order to make the image of high quality of 3D animation, the optimized production pipeline was need. In this paper, in order to overcome the limitation of exiting 3D computer animation production pipeline, we propose the optimized production pipeline of the cloth simulation. Our production pipeline makes the optimization arrangement in consideration of the mobility in order to supplement the related structure limit toward each part of the existing pipeline. Moreover, by utilizing the dummy cloth the association nature with the animation part is solved and a performance is improved. The proposal pipeline actually introduced to the animation production. And then we can improve the performance production time and production manpower consumption. Consequently, our pipeline is guaranteed an optimized work by emphasizing a connection in the direct image production.

3D Modeling of a Fabric based on its 3D Microstructure Image and Application of the Model of the Numerical Simulation of Heat Transfer

  • Lee, Hyojeong;Lee, Heeran;Eom, Ran-i;Lee, Yejin
    • Journal of Fashion Business
    • /
    • v.20 no.3
    • /
    • pp.30-42
    • /
    • 2016
  • The objective of this study was to perform 3D solid modeling from 3D scanned surface images of cotton and silk in order to calculate the thermal heat transfer responses using numerical simulations. Continuing from the previous methodology, which provided 3D surface data for a fabric through optical measurements of the fabric microstructure, a simplified 3D solid model, containing a defined unit cell, pattern unit and fabric structure, was prepared. The loft method was used for 3D solid-model generation, and heat transfer calculations, made for the fabric, were then carried out using the 3D solid model. As a result, comprehensive protocols for 3D solid-model generation were established based on the optical measurements of real fabric samples. This method provides an effective means of using 3D information for building 3D models of actual fabrics and applying the model in numerical simulations. The developed process can be used as the basis for other analogous research areas to investigate the physical characteristics of any fabrics.

Segmentation and 3D Visualization of Medical Image : An Overview

  • Kang, Jiwoo;Kim, Doyoung;Lee, Sanghoon
    • Journal of International Society for Simulation Surgery
    • /
    • v.1 no.1
    • /
    • pp.27-31
    • /
    • 2014
  • In this paper, an overview of segmentation and 3D visualization methods are presented. Commonly, the two kinds of methods are used to visualize organs and vessels into 3D from medical images such as CT(A) and MRI - Direct Volume Rendering (DVR) and Iso-surface Rendering (IR). DVR can be applied directly to a volume. It directly penetrates through the volume while it determines which voxels are visualizedbased on a transfer function. On the other hand, IR requires a series of processes such as segmentation, polygonization and visualization. To extract a region of interest (ROI) from the medical volume image via the segmentation, some regions of an object and a background are required, which are typically obtained from the user. To visualize the extracted regions, the boundary points of the regions should be polygonized. In other words, the boundary surface composed of polygons such as a triangle and a rectangle should be required to visualize the regions into 3D because illumination effects, which makes the object shaded and seen in 3D, cannot be applied directly to the points.

Residual Image Compression based on Wavelet Transform (웨이브릿 변환을 이용한 스테레오 영상 압축)

  • 정한조;유지상;김은수
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.25 no.4B
    • /
    • pp.763-770
    • /
    • 2000
  • In this paper, a new stereo image compression algorithm is suggested in which the residual image extracted from the stereo image by the disparity-compensated prediction method is compressed using the wavelet transform considering the inter & intra correlation between subbands. The compression performance of the proposed method is significantly improved by comparing with the conventional algorithm such as EPIC, EPWIC & JPEG through the computer simulation and the PSNR is also increased about 3.5dB compared with the EPIC. Finally, the stereo image having a good 3D effect can be reconstructed from the compressed image data by the proposed method.

  • PDF

Essential Computer Vision Methods for Maximal Visual Quality of Experience on Augmented Reality

  • Heo, Suwoong;Song, Hyewon;Kim, Jinwoo;Nguyen, Anh-Duc;Lee, Sanghoon
    • Journal of International Society for Simulation Surgery
    • /
    • v.3 no.2
    • /
    • pp.39-45
    • /
    • 2016
  • The augmented reality is the environment which consists of real-world view and information drawn by computer. Since the image which user can see through augmented reality device is a synthetic image composed by real-view and virtual image, it is important to make the virtual image generated by computer well harmonized with real-view image. In this paper, we present reviews of several works about computer vision and graphics methods which give user realistic augmented reality experience. To generate visually harmonized synthetic image which consists of a real and a virtual image, 3D geometry and environmental information such as lighting or material surface reflectivity should be known by the computer. There are lots of computer vision methods which aim to estimate those. We introduce some of the approaches related to acquiring geometric information, lighting environment and material surface properties using monocular or multi-view images. We expect that this paper gives reader's intuition of the computer vision methods for providing a realistic augmented reality experience.

A cosmic ray muons tomography system with triangular bar plastic scintillator detectors and improved 3D image reconstruction algorithm: A simulation study

  • Yanwei Zhao;Xujia Luo;Kemian Qin;Guorui Liu;Daiyuan Chen;R.S. Augusto;Weixiong Zhang;Xiaogang Luo;Chunxian Liu;Juntao Liu;Zhiyi Liu
    • Nuclear Engineering and Technology
    • /
    • v.55 no.2
    • /
    • pp.681-689
    • /
    • 2023
  • Purpose: Muons are characterized by a strong penetrating ability and can travel through thousands of meters of rock, making them ideal to image large volumes and substances typically impenetrable to, for example, electrons and photons. The feasibility of 3D image reconstruction and material identification based on a cosmic ray muons tomography (MT) system with triangular bar plastic scintillator detectors has been verified in this paper. Our prototype shows potential application value and the authors wish to apply this prototype system to 3D imaging. In addition, an MT experiment with the same detector system is also in progress. Methods: A simulation based on GEANT4 was developed to study cosmic ray muons' physical processes and motion trails. The yield and transportation of optical photons scintillated in each triangular bar of the detector system were reproduced. An image reconstruction algorithm and correction method based on muon scattering, which differs from the conventional PoCA algorithm, has been developed based on simulation data and verified by experimental data. Results: According to the simulation result, the detector system's position resolution is below 1 ~ mm in simulation and 2 mm in the experiment. A relatively legible 3D image of lead bricks in size of 20 cm × 5 cm × 10 cm used our inversion algorithm can be presented below 1× 104 effective events, which takes 16 h of acquisition time experimentally. Conclusion: The proposed method is a potential candidate to monitor the cosmic ray MT accurately. Monte Carlo simulations have been performed to discuss the application of the detector and the simulation results have indicated that the detector can be used in cosmic ray MT. The cosmic ray MT experiment is currently underway. Furthermore, the proposal also has the potential to scan the earth, buildings, and other structures of interest including for instance computerized imaging in an archaeological framework.