• Title/Summary/Keyword: 3D image model

Search Result 1,052, Processing Time 0.022 seconds

Quantification of Myocardial Blood flow using Dynamic N-13 Ammonia PET and factor Analysis (N-13 암모니아 PET 동적영상과 인자분석을 이용한 심근 혈류량 정량화)

  • Choi, Yong;Kim, Joon-Young;Im, Ki-Chun;Kim, Jong-Ho;Woo, Sang-Keun;Lee, Kyung-Han;Kim, Sang-Eun;Choe, Yearn-Seong;Kim, Byung-Tae
    • The Korean Journal of Nuclear Medicine
    • /
    • v.33 no.3
    • /
    • pp.316-326
    • /
    • 1999
  • Purpose: We evaluated the feasibility of extracting pure left ventricular blood pool and myocardial time-activity curves (TACs) and of generating factor images from human dynamic N-13 ammonia PET using factor analysis. The myocardial blood flow (MBF) estimates obtained with factor analysis were compared with those obtained with the user drawn region-of-interest (ROI) method. Materials and Methods: Stress and rest N-13 ammonia cardiac PET imaging was acquired for 23 min in 5 patients with coronary artery disease using GE Advance tomograph. Factor analysis generated physiological TACs and factor images using the normalized TACs from each dixel. Four steps were involved in this algorithm: (a) data preprocessing; (b) principal component analysis; (c) oblique rotation with positivity constraints; (d) factor image computation. Area under curves and MBF estimated using the two compartment N-13 ammonia model were used to validate the accuracy of the factor analysis generated physiological TACs. The MBF estimated by factor analysis was compared to the values estimated by using the ROI method. Results: MBF values obtained by factor analysis were linearly correlated with MBF obtained by the ROI method (slope = 0.84, r = 0.91), Left ventricular blood pool TACs obtained by the two methods agreed well (Area under curve ratio: 1.02 ($0{\sim}1min$), 0.98 ($0{\sim}2min$), 0.86 ($1{\sim}2min$)). Conclusion: The results of this study demonstrates that MBF can be measured accurately and noninvasively with dynamic N-13 ammonia PET imaging and factor analysis. This method is simple and accurate, and can measure MBF without blood sampling, ROI definition or spillover correction.

  • PDF

Label Embedding for Improving Classification Accuracy UsingAutoEncoderwithSkip-Connections (다중 레이블 분류의 정확도 향상을 위한 스킵 연결 오토인코더 기반 레이블 임베딩 방법론)

  • Kim, Museong;Kim, Namgyu
    • Journal of Intelligence and Information Systems
    • /
    • v.27 no.3
    • /
    • pp.175-197
    • /
    • 2021
  • Recently, with the development of deep learning technology, research on unstructured data analysis is being actively conducted, and it is showing remarkable results in various fields such as classification, summary, and generation. Among various text analysis fields, text classification is the most widely used technology in academia and industry. Text classification includes binary class classification with one label among two classes, multi-class classification with one label among several classes, and multi-label classification with multiple labels among several classes. In particular, multi-label classification requires a different training method from binary class classification and multi-class classification because of the characteristic of having multiple labels. In addition, since the number of labels to be predicted increases as the number of labels and classes increases, there is a limitation in that performance improvement is difficult due to an increase in prediction difficulty. To overcome these limitations, (i) compressing the initially given high-dimensional label space into a low-dimensional latent label space, (ii) after performing training to predict the compressed label, (iii) restoring the predicted label to the high-dimensional original label space, research on label embedding is being actively conducted. Typical label embedding techniques include Principal Label Space Transformation (PLST), Multi-Label Classification via Boolean Matrix Decomposition (MLC-BMaD), and Bayesian Multi-Label Compressed Sensing (BML-CS). However, since these techniques consider only the linear relationship between labels or compress the labels by random transformation, it is difficult to understand the non-linear relationship between labels, so there is a limitation in that it is not possible to create a latent label space sufficiently containing the information of the original label. Recently, there have been increasing attempts to improve performance by applying deep learning technology to label embedding. Label embedding using an autoencoder, a deep learning model that is effective for data compression and restoration, is representative. However, the traditional autoencoder-based label embedding has a limitation in that a large amount of information loss occurs when compressing a high-dimensional label space having a myriad of classes into a low-dimensional latent label space. This can be found in the gradient loss problem that occurs in the backpropagation process of learning. To solve this problem, skip connection was devised, and by adding the input of the layer to the output to prevent gradient loss during backpropagation, efficient learning is possible even when the layer is deep. Skip connection is mainly used for image feature extraction in convolutional neural networks, but studies using skip connection in autoencoder or label embedding process are still lacking. Therefore, in this study, we propose an autoencoder-based label embedding methodology in which skip connections are added to each of the encoder and decoder to form a low-dimensional latent label space that reflects the information of the high-dimensional label space well. In addition, the proposed methodology was applied to actual paper keywords to derive the high-dimensional keyword label space and the low-dimensional latent label space. Using this, we conducted an experiment to predict the compressed keyword vector existing in the latent label space from the paper abstract and to evaluate the multi-label classification by restoring the predicted keyword vector back to the original label space. As a result, the accuracy, precision, recall, and F1 score used as performance indicators showed far superior performance in multi-label classification based on the proposed methodology compared to traditional multi-label classification methods. This can be seen that the low-dimensional latent label space derived through the proposed methodology well reflected the information of the high-dimensional label space, which ultimately led to the improvement of the performance of the multi-label classification itself. In addition, the utility of the proposed methodology was identified by comparing the performance of the proposed methodology according to the domain characteristics and the number of dimensions of the latent label space.