• Title/Summary/Keyword: 3D human skin equivalents

Search Result 5, Processing Time 0.016 seconds

Development of wrinkled skin-on-a-chip (WSOC) by cyclic uniaxial stretching

  • Lim, Ho Yeong;Kim, Jaewon;Song, Hyun Jeong;Kim, Kyunghee;Choi, Kyung Chan;Park, Sungsu;Sung, Gun Yong
    • Journal of Industrial and Engineering Chemistry
    • /
    • v.68
    • /
    • pp.238-245
    • /
    • 2018
  • The skin experiences constant physical stimuli, such as stretching. Exposure to excessive physical stimuli stresses the skin and can accelerate aging. In this study, we applied a method that allowed human fibroblasts and keratinocytes to be perfused with media to form 3D skin equivalents that were then uniaxially 10%-stretched for 12 h per day (at either 0.01 or 0.05 Hz) for up to 7 days to form wrinkled skin-on-a-chip (WSOC). There was more wrinkling seen in skin equivalents under 0.01 Hz uniaxial stretching than there was for non-stretched skin equivalents. At 0.05 Hz, the stratum corneum almost disappeared from the skin equivalents, indicating that stretching was harmful for the epidermis. At both frequencies, the production of collagen and related proteins in the skin equivalents, such as fibronectin 10 and keratin, decreased more than those in the non-stretched equivalents, indicating that the dermis also suffered from the repeated tensile stress. These results suggest that WSOCs can be used to examine skin aging and as an in vitro tool to evaluate the efficacy of anti-wrinkle cosmetics and medicines.

Effect of Skin Wrinkle Reduction Using Emulsions with Microbiome Extracts Selected by 3D Human Skin Equivalents (3차원 배양 인공피부를 활용한 마이크로바이옴 추출물의 선정 및 이를 함유한 에멀젼 제형의 피부주름개선 임상 평가)

  • Jun Woo Lim;Yerim Kim;Jimin Jeong;Ji-Eun Kwon;Seong-Hyun Jo;Jindong Jang;Junsu Park;Yun-Gon Kim;Jae Hyun Jeong
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.49 no.1
    • /
    • pp.47-58
    • /
    • 2023
  • Recently, along with the remarkable increase in interest in microbiome cosmetics, the application of microbiome extracts in the complex efficacy as anti-aging, brightening etc. has become very important. In this study, Bifidobacterium bifidum (B. bifidum), which has excellent anti-wrinkle efficacy among the microbiome, was selected through an in vitro test using cells and 3D human skin equivalents. And the anti-wrinkle efficacy of cosmetics containing B. bifidum was evaluated by clinical test. Thereafter, the cytotoxicity, anti-oxidation, anti-inflammatory and anti-wrinkle efficacy of the of the bifida fermented filtrate were tested. An emulsion containing bifida fermented filtrate at a concentration of 5% (v/v) with no cytotoxicity and excellent efficacy was prepared with the placebo emulsion. The clinical test was conducted on a total of 21 women at 2 weeks comparing the bifida emulsion and placebo emulsion. Wrinkles around the eyes were instrumentally evaluated using Antera 3D. The wrinkle reduction rate of the Bifida emulsion group compared with the placebo emulsion group differed by 5.6%. Overall, the selection of microbiome using 3D human skin equivalents and the efficacy study of cosmetics with the microbiome extracts would be actively studied to the development of microbiome cosmetics and skin microbiome mechanisms.

The Anti-Diabetic Pinitol Improves Damaged Fibroblasts

  • Ji-Yong Jung;Joong Hyun Shim;Su Hae Cho;Il-Hong Bae;Seung Ha Yang;Jinsick Kim;Hye Won Lim;Dong Wook Shin
    • Biomolecules & Therapeutics
    • /
    • v.32 no.2
    • /
    • pp.224-230
    • /
    • 2024
  • Pinitol (3-O-Methyl-D-chiro-inositol) has been reported to possess insulin-like effects and is known as one of the anti-diabetic agents to improve muscle, liver, and endothelial cells. However, the beneficial effects of pinitol on the skin are not well known. Here, we investigated whether pinitol had effects on human dermal fibroblasts (HDFs), and human dermal equivalents (HDEs) irradiated with ultraviolet A (UVA), which causes various damages including photodamage in the skin. We observed that pinitol enhanced wound healing in UVA-damaged HDFs. We also found that pinitol significantly antagonized the UVA-induced up-regulation of matrix metalloproteinase 1 (MMP1), and the UVA-induced down-regulation of collagen type I and tissue inhibitor of metalloproteinases 1 (TIMP1) in HDEs. Electron microscopy analysis also revealed that pinitol remarkably increased the number of collagen fibrils with regular banding patterns in the dermis of UVA-irradiated human skin equivalents. Pinitol significantly reversed the UVA-induced phosphorylation levels of ERK and JNK but not p38, suggesting that this regulation may be the mechanism underlying the pinitol-mediated effects on UVA-irradiated HDEs. We also observed that pinitol specifically increased Smad3 phosphorylation, which is representative of the TGF-β signaling pathway for collagen synthesis. These data suggest that pinitol exerts several beneficial effects on UVA-induced damaged skin and can be used as a therapeutic agent to improve skin-related diseases.

Skin photoaging in reconstituted skin culture models (3D 피부세포 배양계를 이용한 피부광노화 연구)

  • 강상진
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.25 no.2
    • /
    • pp.59-75
    • /
    • 1999
  • Skin is continuously exposed to external stimuli including ultraviolet radiation, which is a major cause of skin photoaging. According to recent discoveries, UVA with a lower energy but deep-penetrating properties, compared to UVB, is likely to play a major part in causing skin photoaging. The clinical and histochemical changes of photoaging are well characterized, but the biochemical mechanisms are poorly understood partly due to the lack of suitable experimental systems. In this work, three-dimensional, reconstituted skin culture models were prepared. After certain period of maturation, the equivalent models were shown to be similar in structure and biochemical characteristics to normal skin. Mature dermal and skin equivalent models were exposed to sub-lethal doses of UVA, and the effects of UVA relevant to dermal photoaging were monitored, including the production of elastin, collagen, collagenase(MMP-1), and tissue inhibitor of metalloproteinases-1 (TIMP-1). Interestingly, dermal and skin equivalents reacted differently to acute and chronic exposure to UVA. Elastin production was increased as soon as one week after commencing UVA irradiation by chronic exposure, although a single exposure failed to do so. This early response could be an important advantage of equivalent models in studying elastosis in photoaged skin. Collagenase activity was increased by acute UVA irradiation, but returned to control levels after repeated exposure. On the other hand, collagen biosynthesis, which was increased by a single exposure, decreased slightly during 5 weeks of prolonged UVA exposure. Collagenase has been thought to be responsible for collagen degeneration in dermal photoaging. However, according to the results obtained in this study, elevated collagenase activity is not likely to be responsible for the degeneration of collagen in dermal photoagig, while reduced production of collagen may be the main reason. It can be concluded that reconstituted skin culture models can serve as useful experimental tools for the study of skin photoaging. These culture models are relatively simple to construct, easy to handle, and are reproducible Moreover the changes of dermal photoaging can be observed within 1-4 weeks of exposure to ultraviolet light compared to 4 months to 2 years for human or animal studies. These models will be useful for biochemical and mechanistic studies in a large number of fields including dermatology, toxicology, and pharmacology.

  • PDF

Analysis of the Component and Immunological Efficacy of Chamaecyparis obtusa Leaf Extract (편백나무 잎 추출물의 성분분석과 면역효능에 관한 연구)

  • Kim, Joung Hee;Lee, Syng-Ook;Do, Kook Bae;Ji, Won Dae;Kim, Sun Gun;Back, Young Doo;Kim, Keuk-Jun
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.50 no.1
    • /
    • pp.37-43
    • /
    • 2018
  • Chamaecyparis obtusa (CO) has recently been attracting attention because of its beneficial effects on skin allergies, atopic dermatitis, and skin diseases, such as acne and eczema. In the present study, the extract from CO leaf grown in Jangseong gun, Jeollanam-do, Korea was evaluated for its anti-oxidant, anti-inflammatory, and anti-allergic effects in vitro. The total polyphenol content of the CO leaf extract was $25.89{\pm}0.31mg$ gallic acid equivalents (GAE)/g. Gas-chromatography mass-spectrometry (GC-MS) analysis revealed the presence of six compounds in the CO leaf extract: ${\alpha}-terpinene$ (3.03 mg/g), ${\alpha}-terpineol$ (9.48 mg/g), limonene (5.96 mg/g), borneol (59.78 mg/g), myrcene (4.85 mg/g), and sabinene (11.31 mg/g). The $RC_{50}$ values of the CO leaf extract for $H_2O_2$ and ABTS radical were $5.47{\pm}0.13mg/mL$ and $4.00{\pm}0.01mg/mL$, respectively. In addition, the CO leaf extract showed significant inhibitory effects on lipopolysaccharide-induced nitric oxide production in RAW 264.7 cells and IgE-induced release of ${\beta}-hexosaminidase$ (degranulation) in mast-cell like RBL-2H3 cells. The cell viability assay showed that the CO leaf extract ($100{\sim}800{\mu}g/mL$) did not affect the viability of human normal skin fibroblast CCD-986sk cells significantly. Overall, these results suggest that the CO leaf extract is a potential functional cosmetic ingredient that can exert anti-oxidant, anti-inflammatory, and anti-allergic effects.