KSII Transactions on Internet and Information Systems (TIIS)
/
v.9
no.8
/
pp.3136-3150
/
2015
A vision-based 3D tracking of articulated human hand is one of the major issues in the applications of human computer interactions and understanding the control of robot hand. This paper presents an improved approach for tracking and recovering the 3D position and orientation of a human hand using the Kinect sensor. The basic idea of the proposed method is to solve an optimization problem that minimizes the discrepancy in 3D shape between an actual hand observed by Kinect and a hypothesized 3D hand model. Since each of the 3D hand pose has 23 degrees of freedom, the hand articulation tracking needs computational excessive burden in minimizing the 3D shape discrepancy between an observed hand and a 3D hand model. For this, we first created a 3D hand model which represents the hand with 17 different parts. Secondly, Random Forest classifier was trained on the synthetic depth images generated by animating the developed 3D hand model, which was then used for Haar-like feature-based classification rather than performing per-pixel classification. Classification results were used for estimating the joint positions for the hand skeleton. Through the experiment, we were able to prove that the proposed method showed improvement rates in hand part recognition and a performance of 20-30 fps. The results confirmed its practical use in classifying hand area and successfully tracked and recovered the 3D hand pose in a real time fashion.
Kim, Ji-Hwan;Park, Jin-Woo;Thang, Nguyen Duc;Kim, Tae-Seong
한국HCI학회:학술대회논문집
/
2009.02a
/
pp.324-329
/
2009
Hand Motion Modeling and Recognition (HMR) are a fundamental technology in the field of proactive computing for designing a human computer interaction system. In this paper, we present a 3D HMR system including data glove based on 3-axis accelerometer sensor and 3D Hand Modeling. Data glove as a device is capable of transmitting the motion signal to PC through wireless communication. We have implemented a 3D hand model using kinematic chain theory. We finally utilized the rule based algorithm to recognize hand gestures namely, scissor, rock and papers using the 3-D hand model.
Recent changes to ubiquitous computing requires more natural human-computer(HCI) interfaces that provide high information accessibility. Hand-gesture, i.e., gestures performed by one 'or two hands, is emerging as a viable technology to complement or replace conventional HCI technology. This paper deals with hand-posture recognition. Hand-posture database construction is important in hand-posture recognition. Human hand is composed of 27 bones and the movement of each joint is modeled by 23 degrees of freedom. Even for the same hand-posture,. grabbed images may differ depending on user's characteristic and relative position between the hand and cameras. To solve the difficulty in defining hand-postures and construct database effective in size, we present a method using a 3D hand model. Hand joint angles for each hand-posture and corresponding silhouette images from many viewpoints by projecting the model into image planes are used to construct the ?database. The proposed method does not require additional equations to define movement constraints of each joint. Also using the method, it is easy to get images of one hand-posture from many vi.ewpoints and distances. Hence it is possible to construct database more precisely and concretely. The validity of the method is evaluated by applying it to the hand-posture recognition system.
본 연구에서는 손동작(Hand Motion)과 수작업(Manual Task) 분석에 VR환경에서 사용되는 각도 측정 장갑(3-D Glove)을 이용하는 방법을 제안하였다. 본 연구에서 개발된 손동작(Hand Motion)과 수작업(Manual Task)의 분석 시스템은 18-sensor $Cyberglove^{TM}$정 시스템으로부터 측정된 angle data를 기초로 손동작이나 수작업에 대한 totalmuscle moment값과 total muscle excursion값을 구하고, digit와 joint의 moment값을 X,Y.Z방향별고 구하는 기능을 가지고 있다. 시스템의 구성은 : (1) $Cyberglove^{TM}$ System과 분석 시스템의 digital data 처리를 기반으로 하는 손동작의 측정 시스템 ; (2) $Cyberglove^{TM}$ System에서 얻어진 자료를 바탕으로 3차원 공간에서 손동작을 표현할 수 있는 Kinematic Hand Model ; (3) Hand Model과 $Cyberglove^{TM}$ Systme을 기반으로 3차원에서 손동작의 역학적 분석을 할 수 있는 3-D Hand Biomechanical Model ; 등으로 되어있다. 본 시스템은 Telerobotics, Medicine, Virtual Reality 등 다양한 분야에 응용이 가능하며, 수작업에 관련되는 Product Design, Manual Control Device, Computer I/O Device의 설계에도 도움이 될 것으로 기대된다.
Modeling hand poses and tracking its movement are one of the challenging problems in computer vision. There are two typical approaches for the reconstruction of hand poses in 3D, depending on the number of cameras from which images are captured. One is to capture images from multiple cameras or a stereo camera. The other is to capture images from a single camera. The former approach is relatively limited, because of the environmental constraints for setting up multiple cameras. In this paper we propose a method of reconstructing 3D hand poses from a 2D input image sequence captured from a single camera by means of Belief Propagation in a graphical model and recognizing a finger clicking motion using a hidden Markov model. We define a graphical model with hidden nodes representing joints of a hand, and observable nodes with the features extracted from a 2D input image sequence. To track hand poses in 3D, we use a Belief Propagation algorithm, which provides a robust and unified framework for inference in a graphical model. From the estimated 3D hand pose we extract the information for each finger's motion, which is then fed into a hidden Markov model. To recognize natural finger actions, we consider the movements of all the fingers to recognize a single finger's action. We applied the proposed method to a virtual keypad system and the result showed a high recognition rate of 94.66% with 300 test data.
KSII Transactions on Internet and Information Systems (TIIS)
/
v.14
no.9
/
pp.3924-3940
/
2020
Dynamic hand gesture recognition(d-HGR) plays an important role in human-computer interaction(HCI) system. With the growth of hand-pose estimation as well as 3D depth sensors, depth, and the hand-skeleton dataset is proposed to bring much research in depth and 3D hand skeleton approaches. However, it is still a challenging problem due to the low resolution, higher complexity, and self-occlusion. In this paper, we propose a hand-shape feature extraction(HSFE) network to produce robust hand-shapes. We build a hand-shape model, and hand-skeleton based on LSTM to exploit the temporal information from hand-shape and motion changes. Fusion between two models brings the best accuracy in dynamic hand gesture (DHG) dataset.
Young-Rim Choi;Ye-Eun Park;Jong-Wook Kim;Sunhee Lee
Journal of the Korean Society of Clothing and Textiles
/
v.48
no.2
/
pp.312-327
/
2024
In this study, a rehabilitation 3D printed wearable device was developed by combining an assembly-type robot hand and an integral-type robot hand through fused deposition 3D printing manufacturing with various hardness TPU (Thermoplastic Polyurethane) filaments. The hardware configuration of the robot hand includes a controller designed with four motors, one small servo motor, and a circuit board. In the case of the assembly-type robot hand model, a 3D printed robot hand was assembled using samples printed with TPU of hardness 87A and 95A. It was observed that TPU with a hardness of 95A was suitable for use due to shape stability. For the integrated-type robot hand model, the external sample using TPU of hardness 95A could be modified through a cutting method, and the hardware configuration is the same as the assembly-type. The system structure of the 3D printed robot hand was improved from an individual control method to a simultaneous transmission method.Furthermore, the system architecture of an integrated 3D printed robotic hand rehabilitation device and the application of the rehabilitation device were developed.
Tracking hands is an essential technique for hand gesture recognition which is an efficient way in Human Computer Interaction (HCI). Recently, many researchers have focused on hands tracking using a 3D hand model and showed robust tracking results compared to using 2D hand models. In this paper, we propose a novel 3D hand tracking method based on a coupled particle filter. This provides robust and fast tracking results by estimating each part of global hand poses and local finger motions separately and then utilizing the estimated results as a prior for each other. Furthermore, in order to improve the robustness, we apply a multi-cue based method by integrating a color-based area matching method and an edge-based distance matching method. In our experiments, the proposed method showed robust tracking results for complex hand motions in a cluttered background.
In this paper, we propose a real-time hand gesture recognition algorithm to eliminate the inconvenience of using hand controllers in VR applications. The user's 3D hand coordinate information is detected by leap motion sensor and then the coordinates are generated into two dimensional image. We classify hand gestures in real-time by learning the imaged 3D hand coordinate information through SSD(Single Shot multibox Detector) model which is one of CNN(Convolutional Neural Networks) models. We propose to use all 3 channels rather than only one channel. A sliding window technique is also proposed to recognize the gesture in real time when the user actually makes a gesture. An experiment was conducted to measure the recognition rate and learning performance of the proposed model. Our proposed model showed 99.88% recognition accuracy and showed higher usability than the existing algorithm.
Kim, Min-Wook;Ahn, Yang-Keun;Jung, Kwang-Mo;Lee, Chil-Woo
The KIPS Transactions:PartB
/
v.17B
no.4
/
pp.287-294
/
2010
TOF technique is one of the skills that can obtain the object's 3D depth information. But depth image has low resolution and fingertip occupy very small region, so, it is difficult to find the precise fingertip's 3D information by only using depth image from TOF camera. In this paper, we estimate fingertip's 3D location using Arm Model and reliable hand's 3D location information that is modified by hexahedron as hand model. Using proposed method we can obtain more precise fingertip's 3D information than using only depth image.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.