• Title/Summary/Keyword: 3D geological modeling

Search Result 57, Processing Time 0.025 seconds

Construction of Precise Digital Terrain Model for Nonmetal Open-pit Mine by Using Unmanned Aerial Photograph (무인항공 사진촬영을 통한 비금속 노천광산 정밀 수치지형모델 구축)

  • Cho, Seong-Jun;Bang, Eun-Seok;Kang, Il-Mo
    • Economic and Environmental Geology
    • /
    • v.48 no.3
    • /
    • pp.205-212
    • /
    • 2015
  • We have verified applicability of UAV(Unmanned Aerial Vehicle) photogrammetry to a mining engineering. The test mine is a smectite mine located at Gyeongju city in Gyeongnam province, Koera. 448 photos over area of $600m{\times}380m$ were taken with overlapped manner using Cannon Mark VI equipped to multicopter DJI S1000, which were processed with AgiSoft Photoscan software to generate orthophoto and DEM model of the study area. photogrammetry data with 10 cm resolution were generated using 6 ground control positions, which were exported to the 3D geological modeling software to make a topographic surface object. Monitoring of amount of ore production and landsliding could be done with less than 1 hours photographing as well as low cost. A direct link between UAV photogrammetry and 3D geological modeling technology might increase productivity of a mine due to appling the topographical surface change immediately according to the mining operation.

Establishing A Database for the Management and Utilization of Geological Research Data: Focusing on the Classification of Rocks and Minerals and 3D Models (지질 연구 자료의 관리와 활용을 위한 데이터베이스 구축: 암석, 광물의 분류와 3D 모델을 중심으로)

  • Ko, Bokyun;Lee, Chang-Wook;Park, Sungjae;Lee, Ki-Young
    • Journal of the Korean earth science society
    • /
    • v.41 no.2
    • /
    • pp.137-146
    • /
    • 2020
  • A great number of geological research data have been produced by individually conducted researchers and then personally stored in domestic universities and research institutes. However, it is difficult to share data with other researchers owing to low and limited accessibility. The purpose of this study is to systematically establish metadata for inaccessible data, to manage them collectively and to provide opportunities for utilizing the data to those who require efficient research methods. Approximately 1,000 geological specimens (900 rocks and fossils, 100 thin sections) were gathered, along with their metadata such as high-resolution photographs, classification, name, owner, address, and geographical coordinates of the sample site, to establish their features. Additionally, 3D modeling data for 100 rocks and fossils were generated. On the basis of this study, it is possible for researchers to access and share crucial geological data that have a high potential to be lost and have been neglected in restricted spaces; by avoiding the wasted time, energy, and costs caused by repetitive collection of data, researchers may perform effective research and achieve qualified and competitive research results. Moreover, vulnerable and important geological data in the field can be protected from damage caused by indiscriminate, repetitive collection of specimens that have previously been secured. Through the establishment of additional metadata concerning the diversity of rocks, fossils, and thin sections kept at other universities and research institutes, much more data can be recognized, leading to advanced research results. Furthermore, specialized comparison and analysis of basic mineralogy and petrology knowledge are anticipated, based on the use of the metadata.

3D Modeling For Resources Estimation of Ilmenite Deposits in Jikjeon-Ri, Hadong Korea (하동군 북천면 직전리에서 산출되는 티탄철석광상의 자원량 평가를 위한 광체 3D 모델링)

  • Kwak, Ji Young;Choi, Jin Beom;Cho, Hyen Goo
    • Journal of the Mineralogical Society of Korea
    • /
    • v.26 no.4
    • /
    • pp.285-297
    • /
    • 2013
  • Ilmenite deposits are developed along the Precambrian intercumulated anorthosite body in Jikjeon-Ri, Bukcheon-Myeon, Hadong, Korea. Both detailed geological survey and drilling prospecting data for seven boreholes can be used to do resource estimation with GOCAD S/W. 3D modeling using geostatistics is applied to predict the shape and size of Ti ore bodies. As a result, 5 Ti ore veins occurred along N-S direction and average grade of Ti and ilmenite resources are calculated as 2.98 wt% Ti and 7,494,303 metric tons ilmenite ore reserves (Ti 223,330 t). This 3D modeling will be applied to the whole ilmenite deposits in Hadong-Sancheong area to predict the exact distribution and resources estimations of Ti ores.

3-D EM Modeling Using Approximate Integral Equation Method for the Models with Non 1-D Background Conductivity (1차원 이외의 배경 전기전도도 구조에서 근사 적분방정식을 이용한 3차원 전자탐사 모델링)

  • Lee Seong Kon;Zhdanov Michael S.
    • Geophysics and Geophysical Exploration
    • /
    • v.8 no.3
    • /
    • pp.207-217
    • /
    • 2005
  • We present a new approximate formulation of the integral equation (IE) method for models with variable background conductivity. This method overcomes the standard limitation of the conventional If method related to the use of a horizontally layered background only. The new approximate IE method still employs the Green's functions for a horizontally layered 1-D model. However, the new method allows us to use an inhomogeneous background with the IE method. The method was carefully tested for modeling the EM field for complex structures with a known variable background conductivity. It can find wide application in modeling EM data for multiple geological models with some common geoelectrical features, like a known inhomogeneous overburden, or salt dome structures.

Primary Solution Evaluations for Interpreting Electromagnetic Data (전자탐사 자료 해석을 위한 1차장 계산)

  • Kim, Hee-Joon;Choi, Ji-Hyang;Han, Nu-Ree;Song, Yoon-Ho;Lee, Ki-Ha
    • Geophysics and Geophysical Exploration
    • /
    • v.12 no.4
    • /
    • pp.361-366
    • /
    • 2009
  • Layered-earth Green's functions in electormagnetic (EM) surveys play a key role in modeling the response of exploration targets. They are computed through the Hankel transforms of analytic kernels. Computational precision depends upon the choice of algebraically equivalent forms by which these kemels are expressed. Since three-dimensional (3D) modeling can require a huge number of Green's function evaluations, total computational time can be influenced by computational time for the Hankel transform evaluations. Linear digital filters have proven to be a fast and accurate method of computing these Hankel transforms. In EM modeling for 3D inversion, electric fields are generally evaluated by the secondary field formulation to avoid the singularity problem. In this study, three components of electric fields for five different sources on the surface of homogeneous half-space were derived as primary field solutions. Moreover, reflection coefficients in TE and TM modes were produced to calculate EM responses accurately for a two-layered model having a sea layer. Accurate primary fields should substantially improve accuracy and decrease computation times for Green's function-based problems like MT problems and marine EM surveys.

Thermal-mechanical sensitivity analysis for the near-field of HLW repository (고준위 폐기물 처분장 near-field에 대한 열-역학적 민감도 분석)

  • 권상기;최종원;강철형
    • Tunnel and Underground Space
    • /
    • v.13 no.2
    • /
    • pp.138-152
    • /
    • 2003
  • Three-dimensional computer modeling using FLAC3D had been carried out fur evaluating the thermal-mechanical stability of a high-level radioactive waste repository excavated in several hundred deep location. For effective modeling, a FISH program was made and the geological conditions and rock properties achieved from the drilling sites in Kosung and Yusung areas were used. Sensitivity analysis fer the stresses and temperatures from the modeling designed utilizing fractional factorial design was carried out. From the sensitivity analysis, the important design parameters and their interactions could be determined. From this study, it was found that deposition hole spacing is the most important parameter on the thermal and mechanical stability. The second and third most important parameters were disposal tunnel and buffer thickness.

FEM Electrical Resistivity Modeling in Cylindrical Coordinates (원통 좌표계에서의 전기비저항 유한요소 모델링)

  • Choi Wonseok;Kim Jung-Ho;Park KwonGyu;Kim Hak-Soo;Suh Jung-Hee
    • Geophysics and Geophysical Exploration
    • /
    • v.5 no.3
    • /
    • pp.206-216
    • /
    • 2002
  • The finite element method (FEM), a powerful numerical modeling tool for solving various engineering problems, is frequently applied to three-dimensional (3-D) modeling thanks to its capability of discretizing and simulating the shape of model with finite number of elements. Considering the accuracy of the solution and computing time in modeling of engineering problems, it is preferable to construct physical continuity and simplify mesh system. Although there exist systematic mesh generation systems for arbitrary shaped model, it is hard to model a simple cylinder in terms of 3-D coordinate system especially in the vicinity of the central axis. In this study I adopt cylindrical coordinate system for modeling the 3-D model space and define the origin of the coordinates with mathematically clear coordinate transformation. Since we can simulate the whole space with hexahedral elements, the cylindrical coordinate system is effective in handling the 3-D model structure. The 3-D do resistivity modeling scheme developed in this study provides basie principle for borehole-to-surface resistivity survey, which can be a useful tool for the application to environmental problem.

Analysis of Changes in Groundwater Level according to Tunnel Passage in Geological Vulnerable Zone (지질취약구간 터널통과에 따른 지하수위 변화량 분석)

  • Choi, Jung-Youl;Yang, Gyu-Nam;Kim, Tae-Jun;Chung, Jee Seung
    • The Journal of the Convergence on Culture Technology
    • /
    • v.6 no.3
    • /
    • pp.369-375
    • /
    • 2020
  • The section of this study is the geological vulnerable zone where groundwater leakage occurred through the tunnel barrier during excavation of the shield tunnel boring machine(TBM) for the construction of the electric power unit. Therefore, a Three D imensions(3D) numerical analysis was performed to analyze the actual situation from before construction to the time when the change in groundwater level occurred, and to reflect the surrounding ground conditions based on the observed change in groundwater level during construction. As a result of the study, the correlation between groundwater level change and tunnel construction around the site was identified. Therefore, it was similar to the measurement result of groundwater level at the target ground. The amount of groundwater discharge to the entrance of the tunnel construction was also similar to the actual measured result, and the numerical analysis method and modeling in this study were analyzed to reflect the site conditions.

Deformation and failure mechanism exploration of surrounding rock in huge underground cavern

  • Tian, Zhenhua;Liu, Jian;Wang, Xiaogang;Liu, Lipeng;Lv, Xiaobo;Zhang, Xiaotong
    • Structural Engineering and Mechanics
    • /
    • v.72 no.2
    • /
    • pp.275-291
    • /
    • 2019
  • In a super-large underground with "large span and high side wall", it is buried in mountains with uneven lithology, complicated geostress field and developed geological structure. These surrounding rocks are more susceptible to stability issues during the construction period. This paper takes the left bank of Baihetan hydropower station (span is 34m) as a case study example, wherein the deformation mechanism of surrounding rock appears prominent. Through analysis of geological, geophysical, construction and monitoring data, the deformation characteristics and factors are concluded. The failure mechanism, spatial distribution characteristics, and evolution mechanism are also discussed, where rock mechanics theory, $FLAC^{3D}$ numerical simulation, rock creep theory, and the theory of center point are combined. In general, huge underground cavern stability issues has arisen with respect to huge-scale and adverse geological conditions since settling these issues will have milestone significance based on the evolutionary pattern of the surrounding rock and the correlation analyses, the rational structure of the factors, and the method of nonlinear regression modeling with regard to the construction and development of hydropower engineering projects among the worldwide.

Development of 3D Reverse Time Migration Software for Ultra-high-resolution Seismic Survey (초고해상 탄성파 탐사를 위한 3차원 역시간 구조보정 프로그램 개발)

  • Kim, Dae-sik;Shin, Jungkyun;Ha, Jiho;Kang, Nyeon Keon;Oh, Ju-Won
    • Geophysics and Geophysical Exploration
    • /
    • v.25 no.3
    • /
    • pp.109-119
    • /
    • 2022
  • The computational efficiency of reverse time migration (RTM) based on numerical modeling is not secured due to the high-frequency band of several hundred Hz or higher for data acquired through a three-dimensional (3D) ultra-high-resolution (UHR) seismic survey. Therefore, this study develops an RTM program to derive high-quality 3D geological structures using UHR seismic data. In the traditional 3D RTM program, an excitation amplitude technique that stores only the maximum amplitude of the source wavefield and a domain-limiting technique that minimizes the modeling area where the source and receivers are located were used to significantly reduce memory usage and calculation time. The program developed through this study successfully derived a 3D migration image with a horizontal grid size of 1 m for the 3D UHR seismic survey data obtained from the Korea Institute of Geoscience and Mineral Resources in 2019, and geological analysis was conducted.