• Title/Summary/Keyword: 3D gait analysis

Search Result 115, Processing Time 0.027 seconds

Gait Study on the Normal and ACL Deficient Patients After Ligament Reconstruction Surgery Using Chaos Analysis Method (전방십자인대 재건수술 환자와 정상인의 보행 연구)

  • Ko Jae-Hun;Moon Byung-Young;Suh Jeung-Tak;Son Kwon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.4 s.247
    • /
    • pp.435-441
    • /
    • 2006
  • The anterior cruciate ligament(ACL) is an important stabilizer of knee joint. The ACL injury of knee is common and a serious ACL injury leads to ligament reconstruction surgery. Gait analysis is essential to identify knee condition of patients who display abnormal gait. The purpose of this study is to evaluate and classify knee condition of ACL deficient patients using a nonlinear dynamic method. The nonlinear method focuses on understanding how variations in the gait pattern change over time. The experiments were carried out for 17 subjects(l2 healthy subjects and five subjects with unilateral deficiency) walking on a motorized treadmill for 100 seconds. Three dimensional kinematics of the lower extremity were collected by using four cameras and KWON 3D motion analysis system. The largest Lyapunov exponent calculated from knee joint flexion-extension time series was used to quantify knee stability. The results revealed the difference between healthy subjects and patients. The deficient knee was significantly unstable compared with the contralateral knee. This study suggests an evaluation scheme of the severity of injury and the level of recovery. The proposed Lyapunov exponent can be used in rehabilitation and diagnosis of recoverable patients.

Tracking a Walking Motion Based on Dynamics Using a Monocular Camera (단일 카메라를 이용한 동역학 기반의 보행 동작 추적)

  • Yoo, Tae-Keun;Choi, Jae-Lim;Kim, Deok-Won
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.49 no.1
    • /
    • pp.20-28
    • /
    • 2012
  • Gait analysis is an examination which extracts objective information from observing human gait and assesses the function. The equipments used recently for gait analysis are expensive due to multiple cameras and force plates, and require the large space to set up the system. In this paper, we proposed a method to measure human gait motions in 3D from a monocular video. Our approach was based on particle filtering to track human motion without training data and previous information about a gait. We used dynamics to make physics-based motions with the consideration of contacts between feet and base. In a walking sequence, our approach showed the mean angular error of $12.4^{\circ}$ over all joints, which was much smaller than the error of $34.6^{\circ}$ with the conventional particle filter. These results showed that a monocular camera is able to replace the existing complicated system for measuring human gait quantitatively.

Development of Leg Stiffness Controllable Artificial Tendon Actuator (LeSATA®) Part I - Gait Analysis of the Metatarsophalangeal Joint Tilt Angles Soonhyuck - (하지강성 가변 인공건 액추에이터(LeSATA®)의 개발 Part I - Metatarsophalangeal Joint Tilt Angle의 보행분석 -)

  • Han, Gi-Bong;Eo, Eun-Kyung;Oh, Seung-Hyun;Lee, Soon-Hyuck;Kim, Cheol-Woong
    • Transactions of the KSME C: Technology and Education
    • /
    • v.1 no.2
    • /
    • pp.153-165
    • /
    • 2013
  • The established gait analysis studies have regarded leg as one single spring. If we can design a knee-ankle actuating mechanism as a primary actuator for supporting knee extension, it might be possible to revolutionary store or release elastic strain energy, which is consumed during the gait cycle, and as a result leg stiffness is expected to increase. An ankle joint actuating mechanism that stores and releases the energy in ankle joint is expected to support and solve excessive artificial leg stiffness caused by the knee actuator (primary actuator) to a reasonable extent. If unnecessary kinematic energy is released with the artificial speed reduction control designed to prevent increase in gait speed caused by increase in time passed, it naturally brings question to the effectiveness of the actuator. As opposed to the already established studies, the authors are currently developing knee-ankle two actuator system under the concept of increasing lower limb stiffness by controlling the speed of gait in relative angular velocity of the two segments. Therefore, the author is convinced that compensatory mechanism caused by knee actuating must exist only in ankle joint. Ankle joint compensatory mechanism can be solved by reverse-examining the change in metatarso-phalangeal joint (MTPJ) tilt angle (${\theta}_1=0^{\circ}$, ${\theta}_2=17^{\circ}$, ${\theta}_3=30^{\circ}$) and the effect of change in gait speed on knee activity.

Effect of Active Change of Foot Progression Angle on Lower Extremity Joint During Gait (보행 시 의도적인 발 디딤 각도 변화가 하지 관절 부하에 미치는 영향)

  • Go, Eun-Ae;Hong, Su-Yeon;Lee, Ki-Kang;An, Keun-Ok
    • Korean Journal of Applied Biomechanics
    • /
    • v.23 no.1
    • /
    • pp.85-90
    • /
    • 2013
  • Efficient gait is compensate for a lack of exercise, but the wrong walking can cause disease that joints, muscles, brain and body structure(Scott & Winter, 1990). Also many researchers has been studied gait of positive mechanism using analytical methods kinetic, kinematic. This study is to identify nature of knee adduction moment, depending on different foot progression angle and the movement of rotation of pelvis and body. Health study subject conducted intended walking with three different angles. The subjects of this study classified three types of walking; walk erect, pigeon-toed walk and an out-toed gait. Ten university students of K without previous operation and disease record selected for this study. For accuracy of this study, three types of walking carried out five times with 3D image analysis and using analysis of ground reaction force to analyze nature of knee adduction moment and the movement of rotation of pelvis and body. Firstly, the HC(heel contact) section value of intended walk erect, pigeon-toed walk and an out-toed gait was not shown statistically significant difference but TO(toe off) section value was shown that the pigeon-toed walk statistically significant. The value of pigeon-toed walk was smallest knee adduction moment(p< 0.005). Secondly, X axis was the change of rotation movement body and pelvis when walk erect, pigeon-toed walk and an out-toed gait. Shown statistically Y axis was not shown statistically significant but Z axis statistically significant(p<0.05). These result show the significant differences on TO section when walking moment reaches HC, it decides the walking types and rotates the foot.

Effect of dimensionless number and analysis of gait pattern by gender -spatiotemporal variables- (보행 분석시 Dimensionless number의 효과 및 성별간 보행패턴 분석 -시공간변인-)

  • Lee, Hyun-Seob
    • 한국체육학회지인문사회과학편
    • /
    • v.53 no.5
    • /
    • pp.521-531
    • /
    • 2014
  • The purposes of this study were to evaluate the effect of normalization by dimensionless number of Hof(1996) and to analysis the gait pattern for 20s Korean males and females. Subjects are selected in accordance with classification system of Korean standard body figure and age. Experimental equipment is the Motion capture system. Subjects who are walked at a self-selected normal walking speed were photographed using the Motion capture system and analyzed using 3D motion analysis method with OrthoTrak, Cortex, Matlab and SPSS for a statistical test. When used to normalize data, there are no differences of statistical significances between gender in all spatiotemporal variables. I concluded that gait research for mutual comparison requires a normalization by dimensionless number to eliminate the effects of the body size and to accurate statistical analysis.

Comparison of Kinematic Data during Walking between Healthy People and Persons with Mild Intellectual Disability (건강한 성인과 경미한 지적장애를 가진 성인의 보행 중 운동학적 데이터 비교)

  • Jin, Da-Hyeon;Hwang, Young-In
    • PNF and Movement
    • /
    • v.20 no.1
    • /
    • pp.19-29
    • /
    • 2022
  • Purpose: The purpose of this study was to analyze the gait patterns of adults with intellectual disability and healthy adults based on collected kinematic data on the lower extremities and to investigate the gait patterns of intellectually disabled people by comparing the differences between the two groups. Methods: The participants were divided into in one group of healthy adults (n = 9) and one group with mild intellectual disabilities (n = 9). 3D motion analysis (Myomotion) was used to collect kinematic data from each group while the participants walked 3 times over 10 m. As a statistical method, each group's kinematic data during walking was analyzed and compared using an independent sample t-test. Results: Comparing the kinematic data of the lower extremities during walking between the group with mild intellectual disability and the healthy group, there were significant differences between the two groups in the hip and ankle joints in the stance and swing phases. Conclusion: The analysis suggests that people with intellectual disabilities have kinematic differences compared with healthy people. Based on the results of this study, it is necessary to conduct further research on rehabilitation programs for joint stabilization, exercise for increasing joint range of motion, muscle strengthening exercise, and proprioception training for people with intellectual disabilities with insufficient physical function.

The Effect of Hinged Ankle-Foot Orthosis on Walking Function in Children With Spastic Diplegic Cerebral Palsy: A Cross-Sectional Pilot Study

  • Kang, Jeong-Hyeon;Kim, Chang-Yong;Ohn, Jin-Moo;Kim, Hyeong-Dong
    • The Journal of Korean Physical Therapy
    • /
    • v.27 no.1
    • /
    • pp.43-49
    • /
    • 2015
  • Purpose: The aim of the current study was to examine the effects of hinged ankle-foot orthosis (HAFO) on walking function in children with spastic diplegic cerebral palsy (CP). Methods: Thirty-two children (mean age: $6.79{\pm}0.35years$, age range: 5-7 years) who were diagnosed with spastic diplegic cerebral palsy participated in the study. Each subject typically walked through 10 meters of a gait platform with markers on the subject's proper body segments and underwent 3-D motion analysis system with and without hinged ankle-foot orthosis. The HAFOs were all custom-made for individual CP children and had plantarflexion stop at $0^{\circ}C$ with no dorsiflexion stop. The interventions were conducted over three trials in each group, and measurements were performed on each subject by one examiner in three trials. 3-D motion analysis system was used to measure gait parameters such as walking velocity, cadence, step-length, step-width, stride-length, and double support period in two conditions. Results: The walking velocity, cadence, step-length, and stride-length were significantly greater for the HAFO condition as compared to the no HAFO condition (p<0.05). However, no significant difference in step-width and double support period was observed between two conditions. Conclusion: These findings suggest that using the HAFO during walking would suggest positive evidence for improving the spatiotemporal parameters of gait in children with spastic diplegic cerebral palsy.

Effect of Artificial Leg Length Discrepancy on 3D Hip Joint Moments during Gait in Healthy Individuals (건강한 성인에서 인위적 다리길이 차이가 보행 중 3차원 엉덩관절 모멘트에 미치는 효과)

  • Jo, Min-Ji;Kim, Dong-Hyun;Han, Dong-Wook;Choi, Eun-Jin;Kim, Ye-Seul;Kim, Yong-Wook
    • PNF and Movement
    • /
    • v.17 no.3
    • /
    • pp.391-399
    • /
    • 2019
  • Purpose: This study investigated the three-dimensional moment values of the hip joint for subjects with artificial leg length alterations and subjects with unaltered leg lengths. Methods: Forty-two healthy adults (8 men, 34 women) participated in this study. The selected subjects were able to walk normally, had less than a 1 cm leg length discrepancy, and were instructed to wear shoes that fit their feet. The study participants performed 8 dynamic gait trails to measure the hip joint moment using a three-dimensional motion analysis system. Kinetic and dynamic three-dimensional gait analysis data were collected from infrared cameras, and a force plate was used to standardize the weight of each subject. Results: There were significant correlations between the differences in the leg length discrepancy during right extension, right flexion, right internal rotation, and left extension in hip joint moments (p<0.05). There were significant correlations between the differences in shoe conditions during left extension, right flexion, right extension, and right internal rotation in the hip moments (p<0.05). Conclusion: This study suggests that a leg length discrepancy can affect hip joint moment, which may further exacerbate musculoskeletal disorders, such as osteoarthritis in lower extremity joints. Therefore, further studies should be conducted to verify the impact of clinical interventions on differences in hip joint moment values to correct leg length discrepancies and prevent osteoarthritis in lower extremity joints.

Chaos Analysis of Major Joint Motions for Young Males During Walking (보행시 젊은 남성에 대한 상.하체 주요 관절 운동의 카오스 분석)

  • Park, Jung-Hong;Kim, Kwang-Hoon;Son, Kwon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.31 no.8
    • /
    • pp.889-895
    • /
    • 2007
  • Quantifying dynamic stability is important to assessment of falling risk or functional recovery for leg injured people. Human locomotion is complex and known to exhibit nonlinear dynamical behaviors. The purpose of this study is to quantify major joints of the body using chaos analysis during walking. Time series of the chaotic signals show how gait patterns change over time. The gait experiments were carried out for ten young males walking on a motorized treadmill. Joint motions were captured using eight video cameras, and then three dimensional kinematics of the neck and the upper and lower extremities were computed by KWON 3D motion analysis software. The correlation dimension and the largest Lyapunov exponent were calculated from the time series to quantify stabilities of the joints. This study presents a data set of nonlinear dynamic characteristics for eleven joints engaged in normal level walking.

Study on the Gait Pattern of the Aged with Lower Limbs Orthosis

  • Kim, Kyong;Kim, Seong-Hyun;Kim, Young-Chul;Kwon, Tae-Kyu;Hong, Chul-Un;Kim, Nam-Gyun
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.2444-2447
    • /
    • 2005
  • The purpose of this study was to analyze the gait motion of the aged with a lower limbs orthosis. The gait motion was analyzed with and without lower limbs orthosis using APAS 3D Motion Analysis System. The pattern of lower limbs motion was tracked based on four targets attached to the body of the subject. The targets were positioned at hip, knee, ankle, and foot. The parameters measured were the displacement, the velocity, and the acceleration of the four targets. The improvement in the measured values on the displacement and the velocity of the four targets were small with the orthosis due to inconvenience of wearing it, but the increase in the acceleration was large due to the elastic force of the rubber actuator. Especially, the increase of the acceleration of foot with lower limbs orthosis seems to help the gait motion of the elderly.

  • PDF