• Title/Summary/Keyword: 3D free vibration

Search Result 174, Processing Time 0.027 seconds

Equivalent Plate Modeling of the Wing-Box Structure with Control Surface

  • Kim, Eun-Ho;Roh, Jin-Ho;Yoo, Seung-Jae;Lee, In
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.7 no.2
    • /
    • pp.104-109
    • /
    • 2006
  • In this study, the equivalent plate model is developed using a finite element method(FEM) based on the first order shear deformation theory(FSDT). The substructure synthesis method is used to consider the control surface. For the verification of the equivalent model, the results of free vibration analysis are compared with the ones of 3D wing structure modeled by using the MSC/NASTRAN.

A new 3-unknown hyperbolic shear deformation theory for vibration of functionally graded sandwich plate

  • Belabed, Zakaria;Bousahla, Abdelmoumen Anis;Houari, Mohammed Sid Ahmed;Tounsi, Abdelouahed;Mahmoud, S.R.
    • Earthquakes and Structures
    • /
    • v.14 no.2
    • /
    • pp.103-115
    • /
    • 2018
  • In this work, a simple but accurate hyperbolic plate theory for the free vibration analysis of functionally graded material (FGM) sandwich plates is developed. The significant feature of this formulation is that, in addition to including the shear deformation effect, it deals with only 3 unknowns as the classical plate theory (CPT), instead of 5 as in the well-known first shear deformation theory (FSDT) and higher-order shear deformation theory (HSDT). A shear correction factor is, therefore, not required. Two common types of FGM sandwich plates are considered, namely, the sandwich with the FGM face sheet and the homogeneous core and the sandwich with the homogeneous face sheet and the FGM core. The equation of motion for the FGM sandwich plates is obtained based on Hamilton's principle. The closed form solutions are obtained by using the Navier technique. The fundamental frequencies are found by solving the eigenvalue problems. Numerical results of the present theory are compared with the CPT, FSDT, order shear deformation theories (HSDTs), and 3D solutions. Verification studies show that the proposed theory is not only accurate and simple in solving the free vibration behaviour of FGM sandwich plates, but also comparable with the higher-order shear deformation theories which contain more number of unknowns.

Modal analysis of perforated rectangular plates in contact with water

  • Jeong, Kyeong-Hoon;Ahn, Byung-Ki;Lee, Seong-Cheol
    • Structural Engineering and Mechanics
    • /
    • v.12 no.2
    • /
    • pp.189-200
    • /
    • 2001
  • This paper presents an experimental modal analysis of perforated rectangular plates in air or in contact with water. The penetration of holes in the plates had a triangular pattern with P/D (pitch to diameter) 2.125, 2.500, 3.000 and 3.750. The plate was clamped along the plate edges by a number of bolts and nuts. The natural frequencies of the perforated plates in air were obtained by the analytical method based on the relation between the reference kinetic and maximum potential energies and compared with the experimental results. Good agreement between the results was found for the natural frequencies of the perforated plates in air. Additionally, it was empirically found that the natural frequencies of the perforated plate in air increase with an increase of P/D, on the other hand, the natural frequencies of the perforated plate in contact with water decrease with an increase of P/D.

Effect of material composition on bending and dynamic properties of FG plates using quasi 3D HSDT

  • Damani, Bakhti;Fekrar, Abdelkader;Selim, Mahmoud M.;Benrahou, Kouider Halim;Benachour, Abdelkader;Tounsi, Abdelouahed;Bedia, E.A. Adda;Hussain, Muzamal
    • Structural Engineering and Mechanics
    • /
    • v.78 no.4
    • /
    • pp.439-453
    • /
    • 2021
  • In this work, quasi three-dimensional (quasi-3D) shear deformation theory is presented for bending and dynamic analysis of functionally graded (FG) plates. The effect of varying material properties and volume fraction of the constituent on dynamic and bending behavior of the FG plate is discussed. The benefit of this model over other contributions is that a number of variables is diminished. The developed model considers nonlinear displacements through the thickness and ensures the free boundary conditions at top and bottom faces of the plate without using any shear correction factors. The basic equations that account for the effects of transverse and normal shear stresses are derived from Hamilton's principle. The analytical solutions are determined via the Navier procedure. The accuracy of the proposed formulation is proved by comparisons with the different 2D, 3D and quasi-3D solutions found in the literature.

Structural damping for soil-structure interaction studies

  • Lutes, Loren D.;Sarkani, Shahram
    • Structural Engineering and Mechanics
    • /
    • v.3 no.2
    • /
    • pp.107-120
    • /
    • 1995
  • A soil-structure interaction formulation is used here which is based on consideration of the dynamics of the structure with a free, rather than a fixed, base. This approach is shown to give a quite simple procedure for coupling the dynamic characteristics of the structure to those of the foundation and soil in order to obtain a matrix formulation for the complete system. In fixed-base studies it is common to presume that each natural mode of the structure has a given fraction of critical damping, and since the interaction formulation uses a free-base model, it seems natural for this situation to assign the equal modal damping values to free-base modes. It is shown, though, that this gives a structural model which is significantly different than the one having equal modal damping in the fixed-base modes. In particular, it is found that the damping matrix resulting in equal modal damping values for free-based modes will give a very significantly smaller damping value for the fundamental distortional mode of the fixed-base structure. Ignoring this fact could lead one to attribute dynamic effects to interaction which are actually due to the choice of damping.

Approximate evaluations and simplified analyses of shear- mode piezoelectric modal effective electromechanical coupling

  • Benjeddou, Ayech
    • Advances in aircraft and spacecraft science
    • /
    • v.2 no.3
    • /
    • pp.275-302
    • /
    • 2015
  • Theoretical and numerical assessments of approximate evaluations and simplified analyses of piezoelectric structures transverse shear modal effective electromechanical coupling coefficient (EMCC) are presented. Therefore, the latter is first introduced theoretically and its approximate evaluations are reviewed; then, three-dimensional (3D) and simplified two-dimensional (2D) plane-strain (PStrain) and plane-stress (PStress) piezoelectric constitutive behaviors of electroded shear piezoceramic patches are derived and corresponding expected short-circuit (SC) and open-circuit (OC) frequencies and resulting EMCC are discussed; next, using a piezoceramic shear sandwich beam cantilever typical benchmark, a 3D finite element (FE) assessment of different evaluation techniques of the shear modal effective EMCC is conducted, including the equipotential (EP) constraints effect; finally, 2D PStrain and PStress FE modal analyses under SC and OC electric conditions, are conducted and corresponding results (SC/OC frequencies and resulting effective EMCC) are compared to 3D ones. It is found that: (i) physical EP constraints reduce drastically the shear modal effective EMCC; (ii) PStress and PStrain results depend strongly on the filling foam stiffness, rendering inadequate the use of popular equivalent single layer models for the transverse shear-mode sandwich configuration; (iii) in contrary to results of piezoelectric shunted damping and energy harvesting popular single-degree-of-freedom-based models, transverse shear modal effective EMCC values are very small in particular for the first mode which is the common target of these applications.

Features of the flow over a finite length square prism on a wall at various incidence angles

  • Sohankar, A.;Esfeh, M. Kazemi;Pourjafari, H.;Alam, Md. Mahbub;Wang, Longjun
    • Wind and Structures
    • /
    • v.26 no.5
    • /
    • pp.317-329
    • /
    • 2018
  • Wake characteristics of the flow over a finite square prism at different incidence angles were experimentally investigated using an open-loop wind tunnel. A finite square prism with a width D = 15 mm and a height H = 7D was vertically mounted on a horizontal flat plate. The Reynolds number was varied from $6.5{\times}10^3$ to $28.5{\times}10^3$ and the incidence angle ${\alpha}$ was changed from $0^{\circ}$ to $45^{\circ}$. The ratio of boundary layer thickness to the prism height was about ${\delta}/H=7%$. The time-averaged velocity, turbulence intensity and the vortex shedding frequency were obtained through a single-component hotwire probe. Power spectrum of the streamwise velocity fluctuations revealed that the tip and base vortices shed at the same frequency as that ofspanwise vortices. Furthermore, the results showed that the critical incidence angle corresponding to the maximum Strouhal number and minimum wake width occurs at ${\alpha}_{cr}=15^{\circ}$ which is equal to that reported for an infinite prism. There is a reduction in the size of the wake region along the height of the prism when moving away from the ground plane towards the free end.

Helicopter BVI Noise Prediction Using Acoustic Analogy and High Resolution Airloads of Time Marching Free Wake Method (자유후류기법에 의한 고해상도 공기력과 음향상사법을 이용한 헬리콥터 로터 블레이드-와류 상호작용 소음 예측)

  • Chung, K.;Lee, D.J.;Hwang, C.
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.16 no.3 s.108
    • /
    • pp.291-297
    • /
    • 2006
  • The BVI(blade vortex interaction) noise Prediction has been one of the most challenging acoustic analyses in helicopter aeromechanical Phenomenon. It is well known high resolution airloads data with accurate tip vortex positions are necessary for the accurate prediction of this phenomenon. The truly unsteady time-marching free-wake method, which is able to capture the tip vortices instability in hover and axial flights, is expanded with the rotor flapping motion and trim routine to predict unsteady airloads in forward and descent flights. And Farassat formulation 1-A based on the FW-H equation is applied for the noise prediction considering the blade flapping motion. Main objective of this study is to validate the newly developed prediction code. To achieve the objective, the descent flight condition of AH-1 OLS(operational loads survey) configuration is analyzed using present code. The predicted sectional thrust distribution and sectional airloads time histories show the present scheme is able to capture well the unsteady airloads caused by a parallel BVI. Finally, the predicted noise data, observed in two different positions where are 3.44 times of rotor radius far from the hub center, are quite reasonable agreements with the experimental data compared to the other analysis results.

Dynamic Test of Structural Models Using $4m{\times}4m$ Shaking Table ($4m{\times}4m$ 진동대를 이용한 구조모델의 동적실험)

  • 이한선;우성우;김병현
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.1 no.1
    • /
    • pp.51-56
    • /
    • 1997
  • The objective of this study is to review the current state of earthquake simulation tecniques using the shaking table and check the reliability. One degree-of-freedom(d.o.f) and three d.o.f aluminium shear models were used and $4m{\times}4m$ 6 d.o.f shaking table was excitated in one horizontal direction to simulate 1940 El centro earthquake accelerogram (NS component). When the actual acceleration history of shaking table is compared to the desired one, it can be found that the overall histories are very similar, but that the lower frequency range (0~2 Hz) of the actual excitation has generally lower amplitude than that of the desired in Fourier transform amplitude. Free vibration and white noise tests have shown almost the some values for natural frequencies, but shown quite different values for damping rations, that is, 1.37% in case of free vibration test vs 14.76 % in case of white noise test. The time histories of story shear driff show the globally linear elastic behaviors. But the elliptical shape of the histories with one of the axis being the stiffness of the story implies the effect of viscous damping.

  • PDF

Vibration characteristics of offshore wind turbine tower with gravity-based foundation under wave excitation

  • Nguyen, Cong-Uy;Lee, So-Young;Huynh, Thanh-Canh;Kim, Heon-Tae;Kim, Jeong-Tae
    • Smart Structures and Systems
    • /
    • v.23 no.5
    • /
    • pp.405-420
    • /
    • 2019
  • In this study, vibration characteristics of offshore wind turbine tower (WTT) with gravity-based foundation (GBF) are identified from dynamic responses under wave-induced excitations. The following approaches are implemented to achieve the objective. Firstly, the operational modal analysis methods such as frequency domain decomposition (FDD) and stochastic subspace identification (SSI) are selected to estimate modal parameters from output-only dynamic responses. Secondly, a GBF WTT model composed of superstructure, substructure and foundation is simulated as a case study by using a structural analysis program, MIDAS FEA. Thirdly, wave pressures acting on the WTT structure are established by nonlinear regular waves which are simulated from a computational fluid software, Flow 3D. Wave-induced acceleration responses of the target structure are analyzed by applying the simulated wave pressures to the GBF WTT model. Finally, modal parameters such as natural frequencies and mode shapes are estimated from the output-only acceleration responses and compared with the results from free vibration analysis. The effect of wave height and period on modal parameter extraction is also investigated for the mode identification of the GBF WTT.