• Title/Summary/Keyword: 3D finite elements

Search Result 386, Processing Time 0.029 seconds

3-D Analysis of Hot Forging Processes using the Mesh Compression Method (격자압축법을 이용한 3차원 단조공정해석)

  • Hong, J.T.;Yang, D.Y.
    • Proceedings of the KSME Conference
    • /
    • 2001.06c
    • /
    • pp.492-497
    • /
    • 2001
  • In the finite element analysis of metal forming processes using general Lagrangian formulation, element nodes in the mesh move and elements are distorted as the material is deformed. The excessive degeneracy of mesh interrupts finite element analysis and thus increases the error of plastic deformation energy. In this study, a remeshing scheme using so-called mesh compression method is proposed to effectively analyze the flash which is generated usually in hot forging processes. In order to verify the effectiveness of the method, several examples are tested in two-dimensional and three-dimensional problems.

  • PDF

The PIC Bumper Beam Design Method with Machine Learning Technique (머신 러닝 기법을 이용한 PIC 범퍼 빔 설계 방법)

  • Ham, Seokwoo;Ji, Seungmin;Cheon, Seong S.
    • Composites Research
    • /
    • v.35 no.5
    • /
    • pp.317-321
    • /
    • 2022
  • In this study, the PIC design method with machine learning that automatically assigning different stacking sequences according to loading types was applied bumper beam. The input value and labels of the training data for applying machine learning were defined as coordinates and loading types of reference elements that are part of the total elements, respectively. In order to compare the 2D and 3D implementation method, which are methods of representing coordinate value, training data were generated, and machine learning models were trained with each method. The 2D implementation method is divided FE model into each face and generating learning data and training machine learning models accordingly. The 3D implementation method is training one machine learning model by generating training data from the entire finite element model. The hyperparameter were tuned to optimal values through the Bayesian algorithm, and the k-NN classification method showed the highest prediction rate and AUC-ROC among the tuned models. The 3D implementation method revealed higher performance than the 2D implementation method. The loading type data predicted through the machine learning model were mapped to the finite element model and comparatively verified through FE analysis. It was found that 3D implementation PIC bumper beam was superior to 2D implementation and uni-stacking sequence composite bumper.

Residual Stress Estimation and Deformation Analysis for Injection Molded Plastic Parts using Three-Dimensional Solid Elements (3 차원 입체요소를 사용한 사출성형품의 잔류응력 예측 및 후변형 해석)

  • Park, Keun;Ahn, Jong-Ho;Yim, Chung-Hyuk
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.4
    • /
    • pp.507-514
    • /
    • 2003
  • Most of CAE analyses for injection molding have been based on the Mele Shaw's approximation: two-dimensional flow analysis. in some cases, that approximation causes significant errors due to loss of the geometrical information as well as simplification of the flow characteristics in the thickness direction. Although injection molding analysis software using three-dimensional solid elements has been developed recently, such as Moldflow Flow3D, it does not contain a deformation analysis function yet. The present work covers three-dimensional deformation analysis or injection molded plastic parts using solid elements. A numerical scheme for deformation analysis has bun proposed from the results of injection molding analysis using Moldflow Flow3D. The accuracy of the proposed approach has been verified through a numerical analysis of rectangular plates with various thicknesses in comparison with the classical shell-based approach. In addition, the reliability of the approach has also been proved through an industrial example. an optical plastic lens, in comparison of real experiments.

Numerical procedures for extreme impulsive loading on high strength concrete structures

  • Danielson, Kent T.;Adley, Mark D.;O'Daniel, James L.
    • Computers and Concrete
    • /
    • v.7 no.2
    • /
    • pp.159-167
    • /
    • 2010
  • This paper demonstrates numerical techniques for complex large-scale modeling with microplane constitutive theories for reinforced high strength concrete, which for these applications, is defined to be around the 7000 psi (48 MPa) strength as frequently found in protective structural design. Applications involve highly impulsive loads, such as an explosive detonation or impact-penetration event. These capabilities were implemented into the authors' finite element code, ParaAble and the PRONTO 3D code from Sandia National Laboratories. All materials are explicitly modeled with eight-noded hexahedral elements. The concrete is modeled with a microplane constitutive theory, the reinforcing steel is modeled with the Johnson-Cook model, and the high explosive material is modeled with a JWL equation of state and a programmed burn model. Damage evolution, which can be used for erosion of elements and/or for post-analysis examination of damage, is extracted from the microplane predictions and computed by a modified Holmquist-Johnson-Cook approach that relates damage to levels of inelastic strain increment and pressure. Computation is performed with MPI on parallel processors. Several practical analyses demonstrate that large-scale analyses of this type can be reasonably run on large parallel computing systems.

Meshless Finite Element Analysis of Three-Dimensional Problems Using Fuzzy Knowledge Processing

  • 이준성
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.8 no.4
    • /
    • pp.1-7
    • /
    • 1998
  • This paper describes a meshless of element-free method based on fuzzy knowledge processing. To efficiently simulate complicated physical phenomena with dynmics and non-linear ploblem using computational mechanics, special method is required such as parallel processing or adaptive analysis techniques. However, the conventional finite element method is too complicated to be employed in the above cases. In order to reduce the above complexity of the conventional finite element analysis systms, the so called meshles finite elements as an input information have been stuided. Node is generated if its distance form existing node points is similar to the node spacing fuction at the point. The node spacing function is well controlled by the fuzzy knowledge processing Practical performances of the present system are demonstrated through several three-dimensional(3D) problems.

  • PDF

Heat transfer analysis of steel plate by moving coil in induction heating process (이동하는 유도가열 코일에 의한 강판의 열 유동 해석)

  • Yun, Jin-O;Yang, Yeong-Su;Gang, Dae-Hyeon
    • Proceedings of the KWS Conference
    • /
    • 2005.11a
    • /
    • pp.126-128
    • /
    • 2005
  • This paper presents a 3-D finite element analysis of a magneto-thermal coupled problem with moving conductor. In the magnetic and thermal analyses, temperature-dependent magnetic and thermal material properties were considered. Transient finite element method for analysis of moving conductor needs many number of elements and much time to make calculation. Therefore, in this paper, finite element formulation derived from quasi-state is adopted. Finite element results were compared with the experimental results. The results demonstrate that this approach is suitable to solve the magneto-thermal coupled problem.

  • PDF

3-D Finite Element Analysis of Superplastic Blow Forming (초소성재료의 압력성형에 관한 삼차원 유한요소해석)

  • Lee, Ki-Seok;Huh, Hoon
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1994.10a
    • /
    • pp.55-63
    • /
    • 1994
  • The analysis of superplastic sheet forming process is studied by the use of the finite element method using a convected coordinate system and a skew boundary condition. In the formulation, the large inelastic behavior of the superplastic material is described as incompressible, nonlinear, viscous flow. The formulation is then approximated to the finite dimensional space with the use of membrane elements, which results in algebraic linear equations. In addition to the finite element formulation, a pressure cycle control algorithm is combined in the analysis for optimization of the forming time, which deals with the maximization of the strain rate sensitivity, the protection of the thickness reduction, the consistency of the desired strain rate and improvement of formability.

  • PDF

Three Dimensional Finite Element Analysis of Filling Stage in Casting Process Using Adaptive Grid Refinement Technique (3차원 적응 격자 세분화를 이용한 주조 공정의 충전 해석)

  • Kim Ki Don;Jeong Jun Ho;Yang Dong Yol
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.29 no.5 s.236
    • /
    • pp.568-576
    • /
    • 2005
  • A 3-D finite element model combined with a volume tracking method is presented in this work to simulate the mold filling for casting processes. Especially, the analysis involves an adaptive grid method that is created under a criterion of element categorization of filling states and locations in the total region at each time step. By using an adaptive grid wherein the elements, finer than those in internal and external regions, are distributed at the surface region through refinement and coarsening procedures, a more efficient analysis of transient fluid flow with free surface is achieved. Adaptive grid based on VOF method is developed in tetrahedral element system. Through a 3-D analysis of the benchmark test of the casting process, the efficiency of the proposed adaptive grid method is verified. Developed FE code is applied to a typical industrial part of the casting process such as aluminum road wheel.

Numerical investigation of RC structural walls subjected to cyclic loading

  • Cotsovos, D.M.;Pavlovic, M.N.
    • Computers and Concrete
    • /
    • v.2 no.3
    • /
    • pp.215-238
    • /
    • 2005
  • This work is based on a nonlinear finite-element model with proven capacity for yielding realistic predictions of the response of reinforced-concrete structures under static monotonically-increasing loading. In it, the material description relies essentially on the two key properties of triaxiality and brittleness and, thus, is simpler than those of most other material models in use. In this article, the finite-element program is successfully used in investigating the behaviour of a series of RC walls under static cyclic loading. This type of loading offers a more strenuous test of the validity of the proposed program since cracks continuously form and close during each load cycle. Such a test is considered to be essential before attempting to use the program for the analysis of concrete structures under seismic excitation in order to ensure that the solution procedure adopted is numerically stable and can accurately predict the behaviour of RC structures under such earthquake-loading conditions. This is achieved through a comparative study between the numerical predictions obtained presently from the program and available experimental data.

Postbuckling and Damage Analysis of Composite Laminated Hollow Cylinder under Lateral Pressure (횡방향 압력을 받는 복합적층 원통실린더의 좌굴후 거동 및 손상해석)

  • Chongdu Cho;Guiping Zhao;HeonJu Kin
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.4
    • /
    • pp.163-172
    • /
    • 2000
  • The postbuckling behavior and progressive damage of composite laminated cylindrical shell under uniform external pressure were investigated by nonlinear finite element method programming. For the finite element analysis, nine-node 3-D degenerated elements were utilized, and arc-length method including line search was adopted for the iteration and load-increment along postbuckling equilibrium path. As results. buckling load, postbucking behavior, and progressive failure f3r various composite laminated cylindrical shells were discussed.

  • PDF