• 제목/요약/키워드: 3D elasticity

검색결과 237건 처리시간 0.024초

Numerical analysis of propagation of macrocracks in 3D concrete structures affected by ASR

  • Moallemi, S.;Pietruszczak, S.
    • Computers and Concrete
    • /
    • 제22권1호
    • /
    • pp.1-10
    • /
    • 2018
  • In this study an implicit algorithm for modeling of propagation of macrocracks in 3D concrete structures suffering from alkali-silica reaction has been developed and implemented. The formulation of the problem prior to the onset of localized deformation is based on a chemo-elasticity approach. The localized deformation mode, involving the formation of macrocracks, is described using a simplified form of the strong discontinuity approach (SDA) that employs a volume averaging technique enhanced by a numerical procedure for tracing the propagation path in 3D space. The latter incorporates a non-local smoothening algorithm. The formulation is illustrated by a number of numerical examples that examine the crack propagation pattern in both plain and reinforced concrete under different loading scenarios.

A semi-analytical FE method for the 3D bending analysis of nonhomogeneous orthotropic toroidal shells

  • Wu, Chih-Ping;Li, En
    • Steel and Composite Structures
    • /
    • 제39권3호
    • /
    • pp.291-306
    • /
    • 2021
  • Based on Reissner's mixed variational theorem (RMVT), the authors develop a semi-analytical finite element (FE) method for a three-dimensional (3D) bending analysis of nonhomogeneous orthotropic, complete and incomplete toroidal shells subjected to uniformly-distributed loads. In this formulation, the toroidal shell is divided into several finite annular prisms (FAPs) with quadrilateral cross-sections, where trigonometric functions and serendipity polynomials are used to interpolate the circumferential direction and meridian-radial surface variations in the primary field variables of each individual prism, respectively. The material properties of the toroidal shell are considered to be nonhomogeneous orthotropic over the meridianradial surface, such that homogeneous isotropic toroidal shells, laminated cross-ply toroidal shells, and single- and bi-directional functionally graded toroidal shells can be included as special cases in this work. Implementation of the current FAP methods shows that their solutions converge rapidly, and the convergent FAP solutions closely agree with the 3D elasticity solutions available in the literature.

Using an equivalent continuum model for 3D dynamic analysis of nanocomposite plates

  • Tahouneh, Vahid
    • Steel and Composite Structures
    • /
    • 제20권3호
    • /
    • pp.623-649
    • /
    • 2016
  • Most of the early studies on plates vibration are focused on two-dimensional theories, these theories reduce the dimensions of problems from three to two by introducing some assumptions in mathematical modeling leading to simpler expressions and derivation of solutions. However, these simplifications inherently bring errors and therefore may lead to unreliable results for relatively thick plates. The main objective of this research paper is to present 3-D elasticity solution for free vibration analysis of continuously graded carbon nanotube-reinforced (CGCNTR) rectangular plates resting on two-parameter elastic foundations. The volume fractions of oriented, straight single-walled carbon nanotubes (SWCNTs) are assumed to be graded in the thickness direction. In this study, an equivalent continuum model based on the Eshelby-Mori-Tanaka approach is employed to estimate the effective constitutive law of the elastic isotropic medium (matrix) with oriented, straight carbon nanotubes (CNTs). The proposed rectangular plates have two opposite edges simply supported, while all possible combinations of free, simply supported and clamped boundary conditions are applied to the other two edges. The formulations are based on the three-dimensional elasticity theory. A semi-analytical approach composed of differential quadrature method (DQM) and series solution is adopted to solve the equations of motion. The fast rate of convergence of the method is demonstrated and comparison studies are carried out to establish its very high accuracy and versatility. The 2-D differential quadrature method as an efficient and accurate numerical tool is used to discretize the governing equations and to implement the boundary conditions. The convergence of the method is demonstrated and to validate the results, comparisons are made between the present results and results reported by well-known references for special cases treated before, have confirmed accuracy and efficiency of the present approach. The novelty of the present work is to exploit Eshelby-Mori-Tanaka approach in order to reveal the impacts of the volume fractions of oriented CNTs, different CNTs distributions, various coefficients of foundation and different combinations of free, simply supported and clamped boundary conditions on the vibrational characteristics of CGCNTR rectangular plates. The new results can be used as benchmark solutions for future researches.

ESPI를 이용한 정사각튜브의 변형계측 (A Study on Measurement of Displacement Using ESPI Method in Square Tubes)

  • 박찬주;김경석;정현철;장호섭
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1997년도 추계학술대회 논문집
    • /
    • pp.241-244
    • /
    • 1997
  • This paper proposes Electronic Speckle Pattern Interferometry(ESPI) for the quantitative buckling analysis of square tube, which is unable to be measured with previous methods. The quantitative buckling analysis in elasticity is important part to study strain-stress analysis of thick-plated tube and fatigue analysis. However, it is unsolved problem with theory and previous experimental method. The merits of ESPI, Whole-filed measurement and high accurate 3D-displacement measurement make it possible to determinate the buckling analysis in elasticity quantitatively.

  • PDF

혼합유한요소모델을 이용한 두꺼운 복합적층판의 불규칙 진동해석(1)-이론적 고찰 (Random Vibration Analysis of Thick Composite Laminated Plate Using Mixed Finite Element Model (1))

  • 석근영;강주원
    • 한국공간정보시스템학회:학술대회논문집
    • /
    • 한국공간정보시스템학회 2004년도 춘계 학술발표회 논문집 제1권1호(통권1호)
    • /
    • pp.190-196
    • /
    • 2004
  • Thick composite laminated plates is considered in 3D finite-element. To consider continuity of transverse stresses and displacement field, mixed finite-element has been developed by using layerwise theory and the minimum potential energy principle. Mixed finite-element has been enforced through the thick direction, Z, of a laminated plate by considering six degree-of-freedoms per node. Six degree-of-freedoms are three displacement components in the coordinate axes directions and three transverse stress components ${\sigma}_z,\;{\tau}_{xz},\;{\tau}_{yz}$. The model maintain the fundamental elasticity relations that are stress-strain relation and displacement-strain relation, because the transverse stress components invoked as nodal degrees of freedom by using the fundamental elasticity relationship between th components of stress and displacement. Random vibration analysis of the model is performed by computing consistent mass matrix and computing covariance in frequency domain technique.

  • PDF

3-D Vibration analysis of FG-MWCNTs/Phenolic sandwich sectorial plates

  • Tahouneh, Vahid
    • Steel and Composite Structures
    • /
    • 제26권5호
    • /
    • pp.649-662
    • /
    • 2018
  • In this study, based on the three-dimensional theory of elasticity, free vibration characteristics of sandwich sectorial plates with multiwalled carbon nanotube-(MWCNT)-reinforced composite core are considered. Modified Halpin-Tsai equation is used to evaluate the Young's modulus of the MWCNT/epoxy composite samples by the incorporation of an orientation as well as an exponential shape factor in the equation. The exponential shape factor modifies the Halpin-Tsai equation from expressing a straight line to a nonlinear one in the MWCNTs wt% range considered. In this paper, free vibration of thick functionally graded sandwich annular sectorial plates with simply supported radial edges and different circular edge conditions including simply supported-clamped, clamped-clamped, and free-clamped is investigated. A semi-analytical approach composed of two-dimensional differential quadrature method and series solution are adopted to solve the equations of motion. The material properties change continuously through the core thickness of the plate, which can vary according to a power-law, exponentially, or any other formulations in this direction. This study serves as a benchmark for assessing the validity of numerical methods or two-dimensional theories used to analysis of laminated sectorial plates.

On the stability of isotropic and composite thick plates

  • Mahmoud, S.R.;Tounsi, Abdelouahed
    • Steel and Composite Structures
    • /
    • 제33권4호
    • /
    • pp.551-568
    • /
    • 2019
  • This proposed project presents the bi-axial and uni-axial stability behavior of laminated composite plates based on an original three variable "refined" plate theory. The important "novelty" of this theory is that besides the inclusion of a cubic distribution of transverse shear deformations across the thickness of the structure, it treats only three variables such as conventional plate theory (CPT) instead five as in the well-known theory of "first shear deformation" (FSDT) and theory of "higher order shear deformation" (HSDT). A "shear correction coefficient" is therefore not employed in the current formulation. The computed results are compared with those of the CPT, FSDT and exact 3D elasticity theory. Good agreement is demonstrated and proved for the present results with those of "HSDT" and elasticity theory.

Vibration analysis of magneto-flexo-electrically actuated porous rotary nanobeams considering thermal effects via nonlocal strain gradient elasticity theory

  • Ebrahimi, Farzad;Karimiasl, Mahsa;Mahesh, Vinyas
    • Advances in nano research
    • /
    • 제7권4호
    • /
    • pp.223-231
    • /
    • 2019
  • In this article the frequency response of magneto-flexo-electric rotary porous (MFERP) nanobeams subjected to thermal loads has been investigated through nonlocal strain gradient elasticity theory. A quasi-3D beam model beam theory is used for the expositions of the displacement components. With the aid of Hamilton's principle, the governing equations of MFERP nanobeams are obtained. Further, administrating an analytical solution the frequency problem of MFERP nanobeams are solved. In addition the numerical examples are also provided to evaluate the effect of nonlocal strain gradient parameter, hygro thermo environment, flexoelectric effect, in-plane magnet field, volume fraction of porosity and angular velocity on the dimensionless eigen frequency.

실감 입체 형상 생성을 위한 카멜레온형 핀아트 장치 개발 (Development of a Chameleonic Pin-Art Equipment for Generating Realistic Solid Shapes)

  • 권오흥;김진영;이설희;김주혜;이상원;조자양;김형태
    • 방송공학회논문지
    • /
    • 제25권4호
    • /
    • pp.497-506
    • /
    • 2020
  • 본 논문에서 제안된 카멜레온형 서피스 (chameleonic surface)는 핀 아트 (pin-art) 장치로서 임의 형상 발생용 입체 디스플레이 장치이다. 슬림 텔레스코픽 액츄에이터 (slim telescopic actuator)와 고탄성의 복합 소재로 생성되는 부드럽고 연속적인 곡면 위에 동적 매핑 영상을 투사하여 사실적인 입체 형상을 연속적으로 생성할 수 있다. 슬림 텔레스코픽 액츄에이터는 적층을 위하여 긴 행정거리를 가지면서 최소 점유 면적을 가지도록 설계하였다. 3차원 형상은 다수의 슬림 텔레스코픽 액츄에이터가 고탄성 소재를 밀어서 돌출시켜서 만들어진다. 이와 같은 구조는 임의의 연속적인 곡면 형상 생성, 동적 영상 투사 및 장치 경량화 등의 장점이 있었다. 수백 개의 슬림 텔레스코픽 액츄에이터가 원활하게 동작하기 위하여 실시간 동기화가 가능한 이더캣 (EtherCAT) 통신 기반의 분산 제어기를 적용하였다. 통합 운영 소프트웨어로 돌출 형상과 입체 영상을 정합하고 다수 영상 투사기로 투사하여 실감 영상을 연속적으로 생성할 수 있었다. 실제 공연을 위하여 오페라용 콘텐츠를 제작하면서 카멜레온 서피스에 최적화하였고, 일반인들을 대상으로 상영하였다.

우리나라 지식생산함수 : 실증분석 (Knowledge Production Function in South Korea : An Empirical Analysis)

  • 조상섭;정동진
    • 기술혁신학회지
    • /
    • 제10권3호
    • /
    • pp.383-405
    • /
    • 2007
  • 본 연구는 공적분 패널방법론을 이용하여 우리나라 15개 산업의 지식생산함수를 추정하였다. 15개 산업의 지식생산함수간에 연관관계를 고려하여 Mark et al. (2005)가 제시한 동태적인 패널 공적분방법론인 DSUR을 이용함으로써, 기존의 방법론보다 효율적인 추정치를 제시하였다. 본 실증연구결과 및 정책적 시사점은 다음과 같다. 패널 공적분계수 추정치를 보면, 지식생산에 대한 연구자규모에 대한 탄력성은 0.25이며, 기존 지식축적량의 탄력성은 0.35로 추정되었다. 따라서 기존 지식축적량이 새로운 지식생산량에 기여하는 추정계수가 1보다 작음으로써, 장기적으로 경제성장은 물리적인 자원과 노동력 증대 그리고 정부의 역할에서 유인된다는 경제성장견해를 뒷받침하게 된다. 본 연구의 실증분석결과로 볼 때, 지식경제로 이행을 위한 정책시사점은 현재 정부 주도적이고 직접적인 R&D 정책추진구조에서 지식의 효율적인 창조 및 확산을 촉진할 수 있는 민간 주도적이고, 간접적인 R&D 정책구조로 전환이 요구된다.

  • PDF