• 제목/요약/키워드: 3D earthquake excitation

Search Result 23, Processing Time 0.024 seconds

Two-dimensional numerical investigation of the effects of multiple sequential earthquake excitations on ancient multi-drum columns

  • Papaloizou, Loizos;Polycarpou, Panayiotis;Komodromos, Petros;Hatzigeorgiou, George D.;Beskos, Dimitri E.
    • Earthquakes and Structures
    • /
    • v.10 no.3
    • /
    • pp.495-521
    • /
    • 2016
  • Ancient monuments of Greek and Roman classical architecture usually consist of multi-drum columns that are constructed of stone blocks placed on top of each other. Several research studies deal with the seismic behaviour of such structures, since earthquakes are common causes of destruction of such monuments. This paper investigates the effect of multiple earthquakes on the seismic performance of multi-drum columns, through numerical simulations and parametric analyses. The Discrete Element Method and an appropriate contact model have been implemented in a specially developed software application that is able to efficiently perform the necessary simulations in two dimensions. Specifically, various strong ground excitations are used in series for the computation of the collective final deformation of multi-drum columns. In order to calculate this cumulative deformation for a series of ground motions, the individual deformation of the column for each excitation is computed and then used as initial conditions for the next earthquake excitation. Various multi-drum columns with different dimensions are also considered in the analyses in order to examine how the geometric characteristics of columns can affect their seismic sequence behaviour, in combination with the excitation frequency content.

Vibration control of 3D irregular buildings by using developed neuro-controller strategy

  • Bigdeli, Yasser;Kim, Dookie;Chang, Seongkyu
    • Structural Engineering and Mechanics
    • /
    • v.49 no.6
    • /
    • pp.687-703
    • /
    • 2014
  • This paper develops a new nonlinear model for active control of three-dimensional (3D) irregular building structures. Both geometrical and material nonlinearities with a neuro-controller training algorithm are applied to a multi-degree-of-freedom 3D system. Two dynamic assembling motions are considered simultaneously in the control model such as coupling between torsional and lateral responses of the structure and interaction between the structural system and the actuators. The proposed control system and training algorithm of the structural system are evaluated by simulating the responses of the structure under the El-Centro 1940 earthquake excitation. In the numerical example, the 3D three-story structure with linear and nonlinear stiffness is controlled by a trained neural network. The actuator dynamics, control time delay and incident angle of earthquake are also considered in the simulation. Results show that the proposed control algorithm for 3D buildings is effective in structural control.

OMA of model chimney using Bench-Scale earthquake simulator

  • Tuhta, Sertac
    • Earthquakes and Structures
    • /
    • v.16 no.3
    • /
    • pp.321-327
    • /
    • 2019
  • This study investigated the possibility of using the recorded micro tremor data on ground level as ambient vibration input excitation data for investigation and application Operational Modal Analysis (OMA) on the bench-scale earthquake simulator (The Quanser Shake Table) for model chimney. As known OMA methods (such as EFDD, SSI and so on) are supposed to deal with the ambient responses. For this purpose, analytical and experimental modal analysis of a model chimney for dynamic characteristics was performed. 3D Finite element model of the chimney was evaluated based on the design drawing. Ambient excitation was provided by shake table from the recorded micro tremor ambient vibration data on ground level. Enhanced Frequency Domain Decomposition is used for the output only modal identification. From this study, best correlation is found between mode shapes. Natural frequencies and analytical frequencies in average (only) 1.996% are different.

Application of OMA on the bench-scale earthquake simulator using micro tremor data

  • Kasimzade, Azer A.;Tuhta, Sertac
    • Structural Engineering and Mechanics
    • /
    • v.61 no.2
    • /
    • pp.267-274
    • /
    • 2017
  • In this study was investigated of possibility using the recorded micro tremor data on ground level as ambient vibration input excitation data for investigation and application Operational Modal Analysis (OMA) on the bench-scale earthquake simulator (The Quanser Shake Table) for model steel structures. As known OMA methods (such as EFDD, SSI and so on) are supposed to deal with the ambient responses. For this purpose, analytical and experimental modal analysis of a model steel structure for dynamic characteristics was evaluated. 3D Finite element model of the building was evaluated for the model steel structure based on the design drawing. Ambient excitation was provided by shake table from the recorded micro tremor ambient vibration data on ground level. Enhanced Frequency Domain Decomposition is used for the output only modal identification. From this study, best correlation is found between mode shapes. Natural frequencies and analytical frequencies in average (only) 2.8% are differences.

Evaluation of scalar structure-specific ground motion intensity measures for seismic response prediction of earthquake resistant 3D buildings

  • Kostinakis, Konstantinos G.;Athanatopoulou, Asimina M.
    • Earthquakes and Structures
    • /
    • v.9 no.5
    • /
    • pp.1091-1114
    • /
    • 2015
  • The adequacy of a number of advanced earthquake Intensity Measures (IMs) to predict the structural damage of earthquake resistant 3D R/C buildings is investigated in the present paper. To achieve this purpose three symmetric in plan and three asymmetric 5-storey R/C buildings are analyzed by nonlinear time history analysis using 74 bidirectional earthquake records. The two horizontal accelerograms of each ground motion are applied along the structural axes of the buildings and the structural damage is expressed in terms of the maximum and average interstorey drift as well as the overall structural damage index. For each individual pair of accelerograms the values of the aforementioned seismic damage measures are determined. Then, they are correlated with several strong motion scalar IMs that take into account both earthquake and structural characteristics. The research identified certain IMs which exhibit strong correlation with the seismic damage measures of the studied buildings. However, the degree of correlation between IMs and the seismic damage depends on the damage measure adopted. Furthermore, it is confirmed that the widely used spectral acceleration at the fundamental period of the structure is a relatively good IM for medium rise R/C buildings that possess small structural eccentricity.

Dynamic Test of Structural Models Using $4m{\times}4m$ Shaking Table ($4m{\times}4m$ 진동대를 이용한 구조모델의 동적실험)

  • 이한선;우성우;김병현
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.1 no.1
    • /
    • pp.51-56
    • /
    • 1997
  • The objective of this study is to review the current state of earthquake simulation tecniques using the shaking table and check the reliability. One degree-of-freedom(d.o.f) and three d.o.f aluminium shear models were used and $4m{\times}4m$ 6 d.o.f shaking table was excitated in one horizontal direction to simulate 1940 El centro earthquake accelerogram (NS component). When the actual acceleration history of shaking table is compared to the desired one, it can be found that the overall histories are very similar, but that the lower frequency range (0~2 Hz) of the actual excitation has generally lower amplitude than that of the desired in Fourier transform amplitude. Free vibration and white noise tests have shown almost the some values for natural frequencies, but shown quite different values for damping rations, that is, 1.37% in case of free vibration test vs 14.76 % in case of white noise test. The time histories of story shear driff show the globally linear elastic behaviors. But the elliptical shape of the histories with one of the axis being the stiffness of the story implies the effect of viscous damping.

  • PDF

Structure-soil-structure interaction in a group of buildings using 3D nonlinear analyses

  • Sharifi, Behroozeh;Nouri, Gholamreza;Ghanbari, Ali
    • Earthquakes and Structures
    • /
    • v.18 no.6
    • /
    • pp.667-675
    • /
    • 2020
  • The current study compares the effect of structure-soil-structure interaction (SSSI) on the dynamic responses of adjacent buildings and isolated structures including soil-structure interaction (SSI) with the responses of fixed-base structures. Structural responses such as the relative acceleration, displacement, drift and shear force were considered under earthquake ground motion excitation. For this purpose, 5-, 10- and 15-story structures with 2-bay moment resisting frames resting on shallow foundations were modeled as a group of buildings in soft soil media. Viscous lateral boundaries and interface elements were applied to the soil model to simulate semi-infinite soil media, frictional contact and probable slip under seismic excitation. The direct method was employed for fully nonlinear time-history dynamic analysis in OpenSees using 3D finite element soil-structure models with different building positions. The results showed that the responses of the grouped structures were strongly influenced by the adjacent structures. The responses were as much as 4 times greater for drift and 2.3 times greater for shear force than the responses of fixed-base models.

Dynamic behavior of a seven century historical monument reinforced by shape memory alloy wires

  • Hamdaoui, Karim;Benadla, Zahira;Chitaoui, Houssameddine;Benallal, Mohammed Elamine
    • Smart Structures and Systems
    • /
    • v.23 no.4
    • /
    • pp.337-345
    • /
    • 2019
  • This work resumes a research that proposes the use of the technique based on the dissipation energy of the shape memory alloy (SMA) ties. It focuses principally on the assessment of the effectiveness of the use of these smart materials on displacements, accelerations and the stresses of the minaret of the great mosque of Ajloun in Jordan. The 3-D finite element model of the minaret is performed by the ANSYS software. First of all, the proposed model is calibrated and validated according to the experimental results gathered from ambient vibration testing results. Then, a nonlinear transient analysis is considered, when the El-Centro earthquake is used as the input signal. Different simulating cases concerning the location, number and type of SMA devices are proposed in order to see their influence on the seismic response of the minaret. Hence, the results confirm the effectiveness of the proposed SMA device.

Elasto-plastic time history analysis of a 117-story high structure

  • Wu, Xiaohan;Li, Yimiao;Zhang, Yunlei
    • Computers and Concrete
    • /
    • v.19 no.1
    • /
    • pp.7-17
    • /
    • 2017
  • In Chinese Design Codes, for super high-rise buildings with complex structural distribution, which are regarded as code-exceeding buildings, elasto-plastic time history analysis is needed to validate the requirement of "no collapse under rare earthquake". In this paper, a 117-story super high-rise building is discussed. It has a height of 597 m and a height-width ratio of 9.5, which have both exceeded the limitations stipulated by the Chinese Design Codes. Mega columns adopted in this structure have cross section area of about $45m^2$ at the bottom, which is infrequent in practical projects. NosaCAD and Perform-3D, both widely used in nonlinear analyses, were chosen in this study, with which two model were established and analyzed, respectively. Elasto-plastic time history analysis was conducted to look into its seismic behavior, emphasizing on the stress state and deformation abilities under intensive seismic excitation.From the comparisons on the results under rare earthquake obtained from NosaCAD and Perform-3D, the overall responses such as roof displacement, inter story drift, base shear and damage pattern of the whole structure from each software show agreement to an extent. Besides, the deformation of the structure is below the limitation of the Chinese Codes, the time sequence and distribution of damages on core tubes are reasonable, and can dissipate certain inputted energy, which indicates that the structure can meet the requirement of "no collapse under rare earthquake".

Seismic Analysis of 3D-Truss by Response Spectrum (응답스펙트럼에 의한 트러스 구조물의 내진해석)

  • 안주옥;이승재
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1999.04a
    • /
    • pp.159-168
    • /
    • 1999
  • In seismic analysis, there are two main ways - uniform load method and dynamic analysis, dynamic analysis can be divided into response spectrum analysis and time history analysis. In case of which get the complexion of the vibration with 3-axis of coordinate direction in each mode of free vibration mode happened owing to complication of the shape, 3-dimensional dynamic analysis is recommended to perform as multi-mode spectral analysis in standard specification for highway bridge. The purpose of this study is to understand the dynamic behavior by performing multi-mode seismic analysis according to responses analysis and time history anal)'sis in using record of earthquake. In accordance with the criterion of seismic design as defined in standard specification for highway bridge by using modified records of the El Centre and Coyote Lake earthquake, response spectrum was constructed by using the tripartite logarithmic plot. The 3-span continuous space truss bridge was selected as model of numerical analysis. As the result performed time history analysis and analysis of response spectrum for the model of numerical analysis, the result of time history analysis was slightly larger than that of response spectrum analysis. This coincide with the tendency of the result came from the analysis when using a jagged response spectrum analysis, This coincide with the tendency of the result came from the analysis when using a jagged response spectrum for a single excitation. In the Process of performing these two analysis. response spectrum analysis is more effective than time history analysis in saving times in analyzing data.

  • PDF