• Title/Summary/Keyword: 3D dredging reclamation visualization program

Search Result 2, Processing Time 0.016 seconds

Comparative Evaluation on Geotechnical Information 3D Visualization Program for Dredging Quantity Estimation (준설 물량 산출을 위한 지반정보 3차원 가시화 프로그램 비교 평가)

  • Lee, Boyoung;Hwang, Bumsik;Kim, Han-Saem;Cho, Wanjei
    • Journal of the Korean GEO-environmental Society
    • /
    • v.17 no.7
    • /
    • pp.35-42
    • /
    • 2016
  • There are many reclamation projects domestically and internationally which requires large quantity of reclaimable materials. To provide enough reclaimable soils which are limited in land, there have been various research focusing on the dredged soils in the marine environments. As a part of this research, a GIS based 3D dredging reclamation visualization program was developed for the volume estimation of dredged soils in 2015. The developed program is based on the digitized spatial information of the site investigation data with a consideration of the reliability of the data. Prior to the validation with the comparisons with the actual dredged volume measurement data, the developed program was compared with the commercial 3D visualization program with 3D visualized results from the test site near the Gunjang harbor. The validation of the developed program was performed in terms of the degree of visualized precision, the sectional and profiling of soil layers and the dredged volume estimation results. Based on the comparisons, both commercial and developed program show similar dredged volume with minor discrepancies in soil layers.

Optimal Input Database Construction for 3D Dredging Quantification (3차원 준설물량 산출을 위한 최적의 입력DB 구축방안)

  • Gang, ByeungJu;Hwang, Bumsik;Park, Heonwoo;Cho, Wanjei
    • Journal of the Korean GEO-environmental Society
    • /
    • v.19 no.5
    • /
    • pp.23-31
    • /
    • 2018
  • The dredging project became more important with the recent construction of off shore structures and reclamation projects. Accordingly, more exact quantitative estimation of the dredged amount should be required. The sub-sea ground information can be obtained generally by the boring investigation and the dredged amount can be estimated based on the depth or the deeper bound of a ceratin layer via 3D visualization program. During the estimation process, the input DB should be constructed with 1D elevation information from boring investigation for the spatially approximated distribution of a deeper bound of each ground layer. The input DB can be varied with the application of the borings and the approximation targets. Therefore, the 3D visualized ground profile and dredged amounts are compared on the actively dredged sites, vicinity of Saemangeum area and outer port area in Gunsan with regard to the input DB construction methods. Conclusively, the input DB based on the spatially approximated depths show higher precision results and more reasonable 3D visualized ground profiles.