• Title/Summary/Keyword: 3D dosimeter

Search Result 59, Processing Time 0.026 seconds

Development of Quality Assurance Software for $PRESAGE^{REU}$ Gel Dosimetry ($PRESAGE^{REU}$ 겔 선량계의 분석 및 정도 관리 도구 개발)

  • Cho, Woong;Lee, Jaegi;Kim, Hyun Suk;Wu, Hong-Gyun
    • Progress in Medical Physics
    • /
    • v.25 no.4
    • /
    • pp.233-241
    • /
    • 2014
  • The aim of this study is to develop a new software tool for 3D dose verification using $PRESAGE^{REU}$ Gel dosimeter. The tool included following functions: importing 3D doses from treatment planning systems (TPS), importing 3D optical density (OD), converting ODs to doses, 3D registration between two volumetric data by translational and rotational transformations, and evaluation with 3D gamma index. To acquire correlation between ODs and doses, CT images of a $PRESAGE^{REU}$ Gel with cylindrical shape was acquired, and a volumetric modulated arc therapy (VMAT) plan was designed to give radiation doses from 1 Gy to 6 Gy to six disk-shaped virtual targets along z-axis. After the VMAT plan was delivered to the targets, 3D OD data were reconstructed from 512 projection data from $Vista^{TM}$ optical CT scanner (Modus Medical Devices Inc, Canada) per every 2 hours after irradiation. A curve for converting ODs to doses was derived by comparing TPS dose profile to OD profile along z-axis, and the 3D OD data were converted to the absorbed doses using the curve. Supra-linearity was observed between doses and ODs, and the ODs were decayed about 60% per 24 hours depending on their magnitudes. Measured doses from the $PRESAGE^{REU}$ Gel were well agreed with the TPS doses at central region, but large under-doses were observed at peripheral region at the cylindrical geometry. Gamma passing rate for 3D doses was 70.36% under the gamma criteria of 3% of dose difference and 3 mm of distance to agreement. The low passing rate was resulted from the mismatching of the refractive index between the PRESAGE gel and oil bath in the optical CT scanner. In conclusion, the developed software was useful for 3D dose verification from PRESAGE gel dosimetry, but further improvement of the Gel dosimetry system were required.

The Effect of Patients Positioning System on the Prescription Dose in Radiation Therapy (방사선치료 시 자세확인시스템이 처방선량에 미치는 영향)

  • Kim, Jeong-Ho;Bae, Seok-Hwan
    • Journal of radiological science and technology
    • /
    • v.40 no.4
    • /
    • pp.613-620
    • /
    • 2017
  • Planning dose must be delivered accurately for radiation therapy. Also, It must be needed accurately setup. However, patient positioning images were need for accuracy setup. Then patient positioning images is followed by additional exposure to radiation. For 45 points in the phantom, we measured the doses for 6 MV and 10 MV photon beams, OBI(On Board Imager) and CBCT(Conebeam Computed Tomography) using OSLD(Optically Stimulated Luminescent Dosimeter). We compared the differences in the cases where posture confirmation imaging at each point was added to the treatment dose. Also, we tried to propose a photography cycle that satisfies the 5% recommended by AAPM(The American Association of Physicists in Medicine). As a result, a maximum of 98.6 cGy was obtained at a minimum of 45.27 cGy at the 6 MV, a maximum of 99.66 cGy at a minimum of 53.34 cGy at the 10 MV, a maximum of 2.64 cGy at the minimum of 0.19 cGy for the OBI and a maximum of 17.18 cGy at the minimum of 0.54 cGy for the CBCT.The ratio of the radiation dose to the treatment dose is 3.49% in the case of 2D imaging and the maximum is 22.65% in the case of 3D imaging. Therefore, tolerance of 2D image is 1 exposure per day, and 3D image is 1 exposure per week. And it is need to calculation of separate in the parallelism at additional study.

Absorbed Dose and Effective Dose for Lung Cancer Image Guided Radiation Therapy(IGRT) using CBCT and 4D-CBCT (폐암 영상유도방사선 치료 시 CBCT와 4D-CBCT를 이용한 흡수선량 및 유효선량에 관한 선량 평가)

  • Kim, Dae yong;Lee, Woo Suk;Koo, Ki Lae;Kim, Joo Seob;Lee, Sang Hyeon
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.28 no.1
    • /
    • pp.57-64
    • /
    • 2016
  • Purpose : To evaluate the results of absorbed and effective doses using CBCT and 4D-CBCT settings for lung cancer. Materials and Methods : This experimental study. Measurements were performed using a Anderson rando phantom with OSLD(optically stimulated luminescent dosimeters). It was performed computed tomography(Lightspeed GE, USA) in order to express the major organs of the human body. Measurements were obtained a mean value is repeated three times each. Evaluations of effective dose and absorbed dose were performed the CL-IX-Thorax mode and Truebeam-Thorax mode CBCT. Additionally, compared Truebeam-Thorax mode CBCT with Truebeam-Thorax mode 4D-CBCT(Four-dimensional Cone Beam Computed Tomography) Results : Average absorbed dose in the CBCT of CL-IX was measured in lung 2.505cGy, heart 2.595cGy, liver 2.145cGy, stomach 1.934cGy, skin 2.233cGy, in case of Truebeam, It was measured lung 1.725cGy, heart 2.034cGy, liver 1.616cGy, stomach 1.470cGy, skin 1.445cGy. In case of 4D-CBCT, It was measured lung 3.849cGy, heart 4.578cGy, liver 3.497cGy, stomach 3.179cGy, skin 3.319cGy Average effective dose, considered tissue weighting and radiation weighting, in the CBCT of CL-IX was measured lung 2.164mSv, heart 2.241mSVv, liver 0.136mSv, stomach 1.668mSv, skin 0.009mSv, in case of Turebeam, it was measured lung 1.725mSv, heart 1.757mSv, liver 0.102mSv, stomach 1.270mSv, skin 0.005mSv, In case of 4D-CBCT, It was measured lung 3.326mSv, heart 3.952mSv, liver 0.223mSv, stomach 2.747mSv, skin 0.013mSv Conclusion : As a result, absorbed dose and effective Dose in the CL-IX than Truebeam was higher about 1.3 times and in the 4D-CBCT Truebeam than CBCT of Truebeam was higher about 2.2times However, a large movement of the patient and respiratory gated radiotherapy may be more accurate treatment in 4D-CBCT. Therefore, it will be appropriate to selectively used.

  • PDF

Noise Exposure Assessment in a Dental School

  • Choosong, Thitiworn;Kaimook, Wandee;Tantisarasart, Ratchada;Sooksamear, Puwanai;Chayaphum, Satith;Kongkamol, Chanon;Srisintorn, Wisarut;Phakthongsuk, Pitchaya
    • Safety and Health at Work
    • /
    • v.2 no.4
    • /
    • pp.348-354
    • /
    • 2011
  • Objectives: This cross-sectional study was performed in the Dental School of Prince of Songkla University to ascertain noise exposure of dentists, dental assistants, and laboratory technicians. A noise spectral analysis was taken to illustrate the spectra of dental devices. Methods: A noise evaluation was performed to measure the noise level at dental clinics and one dental laboratory from May to December 2010. Noise spectral data of dental devices were taken during dental practices at the dental services clinic and at the dental laboratory. A noise dosimeter was set following the Occupational Safety and Health Administration criteria and then attached to the subjects' collar to record personal noise dose exposure during working periods. Results: The peaks of the noise spectrum of dental instruments were at 1,000, 4,000, and 8,000 Hz which depended on the type of instrument. The differences in working areas and job positions had an influence on the level of noise exposure (p < 0.01). Noise measurement in the personal hearing zone found that the laboratory technicians were exposed to the highest impulsive noise levels (137.1 dBC). The dentists and dental assistants who worked at a pedodontic clinic had the highest percent noise dose (4.60 ${\pm}$ 3.59%). In the working areas, the 8-hour time-weighted average of noise levels ranged between 49.7-58.1 dBA while the noisiest working area was the dental laboratory. Conclusion: Dental personnel are exposed to noise intensities lower than occupational exposure limits. Therefore, these dental personnel may not experience a noise-induced hearing loss.

A 3-D Measuring System of Thermoluminescence Spectra and Thermoluminescence of CaSO4 : Dy, P (열자극발광 스펙트럼의 3차원 측정 장치와 CaSO4 : Dy, P의 열자극발광)

  • Lee, Jung-Il;Moon, Jung-Hak;Kim, Douk-Hoon
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.6 no.2
    • /
    • pp.71-75
    • /
    • 2001
  • In this paper, a three-dimensional measuring system of thermoluminescence(TL) spectra based on temperature, wavelength and luminescence intensity was introduced. The system was composed of a spectrometer, temperature control unit for thermal stimulation, photon detector and personal computer for control the entire system. Temperature control was achieved by using feedback to ensure a linear-rise in the sample temperature. Digital multimeter(KEITHLEY 195A) measures the electromotive force of Copper-Constantan thermocouple and then transmits the data to the computer through GPIB card. The computer converts this signal to temperature using electromotive force-temperature table in program, and then control the power supply through the D/A converter. The spectrometer(SPEX 1681) is controlled by CD-2A, which is controlled by the computer through RS-232 communication port. For measuring the luminescence intensity during the heating run, the electrometer(KEITHLEY 617) measures the anode current of photomultiplier tube(HAMAMATSU R928) and transmits the data to computer through the A/D converter. And, we measured and analyzed thermoluminescence of $CaSO_4$ : Dy, P using the system. The measuring range of thermoluminescence spectra was 300K-575K and 300~800 nm, $CaSO_4$ : Dy. P was fabricated by the Yamashita's method in Korea Atomic Energy Research Institute(KAERI) for radiation dosimeter. Thermoluminesce spectra of the $CaSO_4$ : Dy, P consist of two main peak at temperature of $205^{\circ}C$, wavelength 476 nm and 572 nm and with minor ones at 658 nm and 749 nm.

  • PDF

Imaging dose evaluations on Image Guided Radiation Therapy (영상유도방사선치료시 확인 영상의 흡수선량평가)

  • Hwang, Sun Boong;Kim, Ki Hwan;kim, il Hwan;Kim, Woong;Im, Hyeong Seo;Han, Su Chul;Kang, Jin Mook;Kim, Jinho
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.27 no.1
    • /
    • pp.1-11
    • /
    • 2015
  • Purpose : Evaluating absorbed dose related to 2D and 3D imaging confirmation devices Materials and Methods : According to the radiographic projection conditions, absorbed doses are measured that 3 glass dosimeters attached to the centers of 0', 90', 180' and 270' in the head, thorax and abdomen each with Rando phantom are used in field size $26.6{\times}20$, $15{\times}15$. In the same way, absorbed doses are measured for width 16cm and 10cm of CBCT each. OBI(version 1.5) system and calibrated glass dosimeters are used for the measurement. Results : AP projection for 2D imaging check, In $0^{\circ}$ degree absorbed doses measured in the head were $1.44{\pm}0.26mGy$ with the field size $26.6{\times}20$, $1.17{\pm}0.02mGy$ with the field size $15{\times}15$. With the same method, absorbed doses in the thorax were $3.08{\pm}0.86mGy$ to $0.57{\pm}0.02mGy$ by reducing field size. In the abdomen, absorbed dose were reduced $8.19{\pm}0.54mGy$ to $4.19{\pm}0.09mGy$. Finally according to the field size, absorbed doses has decreased by average 5~12%. With Lateral projection, absorbed doses showed average 5~8% decrease. CBCT for 3D imaging check, CBDI in the head were $4.39{\pm}0.11mGy$ to $3.99{\pm}0.13mGy$ by reducing the width 16cm to 10cm. In the same way in thorax the absorbed dose were reduced $34.88{\pm}0.93(10.48{\pm}0.09)mGy$ to $31.01{\pm}0.3(9.30{\pm}0.09)mGy$ and $35.99{\pm}1.86mGy$ to $32.27{\pm}1.35mGy$ in the abdomen. With variation of width 16cm and 10cm, they showed 8~11% decrease. Conclusion : By means of reducing 2D field size, absorbed dose were decreased average 5~12% in 3D width size 8~11%. So that it is necessary for radiation therapists to recognize systematical management for absorbed dose for Imaging confirmation. and also for frequent CBCT, it is considered whether or not prescribed dose for RT refer to imaging dose.

  • PDF

Evaluation of Skin Dose and Image Quality on Cone Beam Computed Tomography (콘빔CT 촬영 시 mAs의 변화에 따른 피부선량과 영상 품질에 관한 평가)

  • Ahn, Jong-Ho;Hong, Chae-Seon;Kim, Jin-Man;Jang, Jun-Young
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.20 no.1
    • /
    • pp.17-23
    • /
    • 2008
  • Purpose: Cone-beam CT using linear accelerator attached to on-board imager is a image guided therapy equipment. Because it is to check the patient's set-up error, correction, organ and target movement. but imaging dose should be cause of the secondary cancer when taking a image. The aim of this study is investigation of appropriate cone beam CT scan mode to compare and estimate the image quality and skin dose. Materials and Methods: Measurement by Thermoluminescence dosimeter (TLD-100, Harshaw) with using the Rando phantom are placed on each eight sites in seperately H&N, thoracic, abdominal section. each 4 methods of scan modes of are measured the for skin dose in three time. Subsequently, obtained average value. Following image quality QA protocol of equipment manufacturers using the catphan 504 phantom, image quality of each scan mode is compared and analyzed. Results: The results of the measured skin dose are described in here. The skin dose of Head & Neck are measured mode A: 8.96 cGy, mode B: 4.59 cGy, mode C: 3.46 cGy mode D: 1.76 cGy and thoracic mode A: 9.42 cGy, mode B: 4.58 cGy, mode C: 3.65 cGy, mode D: 1.85 cGy, and abdominal mode A: 9.97 cGy, mode B: 5.12 cGy, mode C: 4.03 cGy, mode D: 2.21 cGy. Approximately, dose of mode B are reduced 50%, mode C are reduced 60%, mode D are reduced 80% a point of reference dose of mode A. the results of analyzed HU reproducibility, low contrast resolution, spatial resolution (high contrast resolution), HU uniformity in evaluation item of image quality are within the tolerance value by recommended equipment manufacturer in all scan mode. Conclusion: Maintaining the image quality as well as reducing the image dose are very important in cone beam CT. In the result of this study, we are considered when to take mode A when interested in soft tissue. And we are considered to take mode D when interested in bone scan and we are considered to take mode B, C when standard scan. Increasing secondary cancer risk due to cone beam CT scan should be reduced by low mAs technique.

  • PDF

Dosimetric Characteristic of Digital CCD Video Camera for Radiation Therapy

  • Young Woo. Vahc;Kim, Tae Hong.;Won Kyun. Chung;Ohyun Kwon;Park, Kyung Ran.;Lee, Yong Ha.
    • Progress in Medical Physics
    • /
    • v.11 no.2
    • /
    • pp.147-155
    • /
    • 2000
  • Patient dose verification is one of the most important parts in quality assurance of the treatment delivery for radiation therapy. The dose distributions may be meaningfully improved by modulating two dimensional intensity profile of the individual high energy radiation beams In this study, a new method is presented for the pre-treatment dosimetric verification of these two dimensional distributions of beam intensity by means of a charge coupled device video camera-based fluoroscopic device (henceforth called as CCD-VCFD) as a radiation detecter with a custom-made software for dose calculation from fluorescence signals. This system of dosimeter (CCD-VCFD) could reproduce three dimensional (3D) relative dose distribution from the digitized fluoroscopic signals for small (1.0$\times$1.0 cm$^2$ square, ø 1.0 cm circular ) and large (30$\times$30cm$^2$) field sizes used in intensity modulated radiation therapy (IMRT). For the small beam sizes of photon and electron, the calculations are performed In absolute beam fluence profiles which are usually used for calculation of the patient dose distribution. The good linearity with respect to the absorbed dose, independence of dose rate, and three dimensional profiles of small beams using the CCD-VCFD were demonstrated by relative measurements in high energy Photon (15 MV) and electron (9 MeV) beams. These measurements of beam profiles with CCD-VCFD show good agreement with those with other dosimeters such as utramicro-cylindrical (UC) ionization chamber and radiographic film. The study of the radiation dosimetric technique using CCD-VCFD may provide a fast and accurate pre-treatment verification tool for the small beam used in stereotactic radiosurgery (SRS) and can be used for verification of dose distribution from dynamic multi-leaf collimation system (DMLC).

  • PDF

Evaluations and Comparisons of Body Surface Doses during Breast Cancer Treatment by Tomotherapy and LINAC Radiotherapy Devices

  • Lee, Hyun-Jik;Bae, Sun-Hyun;Cho, Kwang Hwan;Jeong, Jae-Hong;Kwon, Su-Il;Lee, Kil-Dong
    • Progress in Medical Physics
    • /
    • v.28 no.4
    • /
    • pp.218-225
    • /
    • 2017
  • Effects on skin caused by the dose from linear accelerator (LINAC) opposing portal irradiation and TomoDirect 3-D modeling treatment according to the radiation devices and treatment methods were measured, and a comparative analysis was performed. Two groups of 10 patients each were created and measurements were carried out using an optically stimulated luminescence dosimeter. These patients were already receiving radiation treatment in the hospital. Using the SPSS statistical program, the minimum and maximum average standard deviations of the measured skin dose data were obtained. Two types of treatment method were selected as independent variables; the measured points and total average were the dependent variables. An independent sample T-test was used, and it was checked whether there was a significance probability between the two groups. The average of the measured results for the LINAC opposing portal radiation was 117.7 cGy and PDD 65.39% for the inner breast, 144.7 cGy and PDD 80.39% for the outer breast, 143.2 cGy and PDD 79.56% for the upper breast, 151.4 cGy and PDD 84.11% for the lower breast, 149.6 cGy and PDD 83.11% for the axilla, and 141.32 cGy and PDD 78.51% for the total average. In contrast, for TomoDirect 3-D conformal radiotherapy, the corresponding measurement values were 137.6 cGy and PDD 76.44%, 152.3 cGy and PDD 84.61%, 148.6 cGy and PDD 82.56%, 159.7 cGy and PDD 88.72%, and 148.6 cGy PDD 82.56%, respectively, and the total average was 149.36 cGy and PDD 82.98%. To determine if the difference between the total averages was statistically significant, the independent sample T-test of the SPSS statistical program was used, which indicated that the P-value was P=0.024, which was 0.05 lower than the significance level. Thus, it can be understood that the null hypothesis can be dismissed, and that there was a difference in the averages. In conclusion, even though the treatment dose was similar, there could be a difference in the dose entering the body surface from the radiation treatment plan; however, depending on the properties of the treatment devices, there is a difference in the dose affecting the body surface. Thus, the absorbed dose entering the body surface can be high. During breast cancer radiotherapy, radiation dermatitis occurs in almost all patients. Most patients have a difficult time while undergoing treatment, and therefore, when choosing a radiotherapy treatment method, minimizing radiation dermatitis is an important consideration.

Consideration on Measured Patients Dose of Three-Dimensional and Four-Dimensional Computer Tomography when CT-Simulation to Radiation Therapy (방사선치료를 위한 CT 검사 시 3DCT와 4DCT에 대한 피폭선량 고찰)

  • Park, Ryeong-Hwang;Kim, Min-Jung;Lee, Sang-Kyu;Park, Kwang-Woo;Jeon, Byeong-Cheol;Cho, Jeong-Hee;Yoo, Beong-Gyu;Lee, Jong-Seok
    • Journal of radiological science and technology
    • /
    • v.34 no.4
    • /
    • pp.341-349
    • /
    • 2011
  • This study was to measure the patient dose difference between 3D treatment planning CT and 4D respiratory gating CT. Study was performed with each 10 patients who have lung and liver cancer for measured patient exposure dose by using SOMATON SENSATION OPEN(SIMENS, GERMANY). CTDIvol and DLP value was used to analyze patient dose, and actual dose was measured in the location of liver and kidney for abdominal examination and lung, heart and spinal cord for chest examination. Rando phantom were used for the experiment. OSLD was used for in-vitro and in-vivo dosimetry. Increasing overall actual dose in 4D respiratory gated CT-simulation using OSLD increase the dose by 5.5 times for liver cancer patients and 6 times for lung cancer patients. In CT simulation of 10 lung cancer patients, CTDIvol value was increased by 5.7 times and DLP 2.4 times. For liver cancer patients, CTDIvol was risen by 3.8 times and DLP 1.6 times. The accuracy of treatment volume could be increased in 4D CT planning for position change due to the breaths of patient in the radiation therapy. However, patients dose was increased in 4D CT than 3D CT. In conclusion, constant efforts is required to reduce patients dose by reducing scan time and scan range.