• Title/Summary/Keyword: 3D digital image

Search Result 860, Processing Time 0.025 seconds

Realtime 3D Human Full-Body Convergence Motion Capture using a Kinect Sensor (Kinect Sensor를 이용한 실시간 3D 인체 전신 융합 모션 캡처)

  • Kim, Sung-Ho
    • Journal of Digital Convergence
    • /
    • v.14 no.1
    • /
    • pp.189-194
    • /
    • 2016
  • Recently, there is increasing demand for image processing technology while activated the use of equipments such as camera, camcorder and CCTV. In particular, research and development related to 3D image technology using the depth camera such as Kinect sensor has been more activated. Kinect sensor is a high-performance camera that can acquire a 3D human skeleton structure via a RGB, skeleton and depth image in real-time frame-by-frame. In this paper, we develop a system. This system captures the motion of a 3D human skeleton structure using the Kinect sensor. And this system can be stored by selecting the motion file format as trc and bvh that is used for general purposes. The system also has a function that converts TRC motion captured format file into BVH format. Finally, this paper confirms visually through the motion capture data viewer that motion data captured using the Kinect sensor is captured correctly.

Noise Reduction Algorithm of Digital Hologram Using Histogram Changing Method (히스토그램 변환기법을 이용한 디지털 홀로그램의 잡음제거 알고리듬)

  • Choi, Hyun-Jun;Seo, Young-Ho;Kim, Dong-Wook
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.12 no.4
    • /
    • pp.603-610
    • /
    • 2008
  • In this paper, we propose an efficient noise reduction algorithm for digital hologram during acquisition and transmission. The proposed algorithm segment a digital hologram with object region and background region after DCT. Then, we adopt a histogram transition method for object region and zero-value change method for background region. The experimental results show that our algorithm has beuer performance than a natural image denoising algorithm.

Realistic 3-dimensional using computer graphics Expression of Human illustrations (컴퓨터그래픽스를 이용한 사실적인 3D 인물 일러스트레이션의 표현)

  • Kim, Hoon
    • Archives of design research
    • /
    • v.19 no.1 s.63
    • /
    • pp.79-88
    • /
    • 2006
  • A human face figure is a visual symbol of identity. Each different face per person is a critical information differentiating each person from others and it directly relates to individual identity. When we look back human history, historical change of recognition for a face led to the change of expression and communication media and it in turn caused many changes in expressing a face. However, there has not been no time period when people pay attention to a face more than this time. Technically, the advent of computer graphics opened new turning point in expressing human face figure. Especially, a visual image which can be produced, saved, and transferred in digital has no limitation in time and space, and its importance in communication is getting higher and higher. Among those visual image information, a face image in digital is getting more applications. Therefore, 3d (3-dimensional) expression of a face using computer graphics can be easily produced without any professional techniques, just like assembling puzzle parts composed of the shape of each part ands texture map, etc. This study presents a method with which a general visual designer can effectively express 3d type face by studying each producing step of 3d face expression and by visualizing case study based on the above-mentioned study result.

  • PDF

Applied Practices on Digital Historical Data Transformation based on Intangible Cultural Heritage with Metaverse Approach

  • Hyeon-Uk Jeong;Janghwan Kim;Jihoon Kong;R. Young Chul Kim
    • International journal of advanced smart convergence
    • /
    • v.13 no.3
    • /
    • pp.279-286
    • /
    • 2024
  • The preservation and transmission of intangible cultural heritage, such as traditional martial arts, have historically relied on manual processes that are both resource-intensive and costly. Due to budget limitations, many of these cultural assets are at risk of deterioration or remain hidden in museum storage, inaccessible to the public. To address these challenges, we propose a Digital Historical Data Transformation mechanism utilizing metaverse development techniques. This innovative approach converts 2D images into 3D representations, allowing for the extraction and visualization of associated actions in a three-dimensional space. By applying this methodology to the "Muyedobotongji," a classic text on traditional martial arts, we aim to digitally preserve these practices in a way that is both immersive and interactive. The transformation of static 2D images into dynamic 3D visualizations will not only enhance the restoration process but also make these cultural assets more accessible and engaging for future generations. This digital approach promises a more efficient and sustainable means of preserving intangible cultural heritage, ensuring that these traditions continue to thrive in the modern world.

Extraction of Subject Size in Still Image Using Floor Pattern (바닥 패턴을 이용한 단일영상 내의 피사체 크기 추출)

  • Hwang, Min-Gu;Kim, Dong-Min;Har, Dong-Hwan
    • The Journal of the Korea Contents Association
    • /
    • v.11 no.4
    • /
    • pp.11-17
    • /
    • 2011
  • This paper aims to realize the information of a subject existing in a still image with objective values. To attain the goal, this research takes the vanishing point that a 2D still image has as the basis and recomposes the still image into a 3D image using a 3D program. Also, in order to set up the axis of the camera necessary to recompose a 3D image, this paper used the lens angle of view that the image has and floor patterns as well. The 3D image completed in this way can measure the size and distance of all subjects in the floor patterns if the size value of a particular reference subject is known, and through this, it can be possible to acquire basic information of a subject that can be either a criminal or a clue in the images of CCTVs or some criminal scene.

Abdominal-Deformation Measurement for a Shape-Flexible Mannequin Using the 3D Digital Image Correlation

  • Liu, Huan;Hao, Kuangrong;Ding, Yongsheng
    • Journal of Computing Science and Engineering
    • /
    • v.11 no.3
    • /
    • pp.79-91
    • /
    • 2017
  • In this paper, the abdominal-deformation measurement scheme is conducted on a shape-flexible mannequin using the DIC technique in a stereo-vision system. Firstly, during the integer-pixel displacement search, a novel fractal dimension based on an adaptive-ellipse subset area is developed to track an integer pixel between the reference and deformed images. Secondly, at the subpixel registration, a new mutual-learning adaptive particle swarm optimization (MLADPSO) algorithm is employed to locate the subpixel precisely. Dynamic adjustments of the particle flight velocities that are according to the deformation extent of each interest point are utilized for enhancing the accuracy of the subpixel registration. A test is performed on the abdominal-deformation measurement of the shape-flexible mannequin. The experiment results indicate that under the guarantee of its measurement accuracy without the cause of any loss, the time-consumption of the proposed scheme is significantly more efficient than that of the conventional method, particularly in the case of a large number of interest points.

Vision-based Camera Localization using DEM and Mountain Image (DEM과 산영상을 이용한 비전기반 카메라 위치인식)

  • Cha Jeong-Hee
    • Journal of the Korea Society of Computer and Information
    • /
    • v.10 no.6 s.38
    • /
    • pp.177-186
    • /
    • 2005
  • In this Paper. we propose vision-based camera localization technique using 3D information which is created by mapping of DEM and mountain image. Typically, image features for localization have drawbacks, it is variable to camera viewpoint and after time information quantify increases . In this paper, we extract invariance features of geometry which is irrelevant to camera viewpoint and estimate camera extrinsic Parameter through accurate corresponding Points matching by Proposed similarity evaluation function and Graham search method we also propose 3D information creation method by using graphic theory and visual clues, The Proposed method has the three following stages; point features invariance vector extraction, 3D information creation, camera extrinsic Parameter estimation. In the experiments, we compare and analyse the proposed method with existing methods to demonstrate the superiority of the proposed methods.

  • PDF

A Study on the Application Technology of Three-dimensional Urban Geo-spatial Simulation using Digital Satellite Image (디지털 위성영상의 3차원 도시공간 시뮬레이션 적용기술연구)

  • 연상호
    • The Journal of the Korea Contents Association
    • /
    • v.4 no.2
    • /
    • pp.7-12
    • /
    • 2004
  • The technique of birdeye image generation of terrain through the use of satellite digital images and digital maps are very important elements and have applications in fanning establishment as well as the actual design of several construction works in complex fields. This paper studies stereo perspective image generation as a possibility through 3-dimensional analysis combined with digital elevation data and remotely sensed images. For this, first of all, ortho-images generated by very accurate GCP and DEM from contour file makes 3-dimensional terrain analysis possible and allows stereo­viewing at the highway construction planning sites. So, we developed the technical methods for the 3-dimensional approach on the planning sites of highways by use of perspective orthoimages. From this research, diverse terrain analysis is possible through stereo perspective image generation, and can leads to various application in road construction through gain study results from access to realtime virtual spatial on the objects area in korea.

  • PDF

The effects of image acquisition control of digital X-ray system on radiodensity quantification

  • Seong, Wook-Jin;Kim, Hyeon-Cheol;Jeong, Soocheol;Heo, Youngcheul;Song, Woo-Bin;Ahmad, Mansur
    • Restorative Dentistry and Endodontics
    • /
    • v.38 no.3
    • /
    • pp.146-153
    • /
    • 2013
  • Objectives: Aluminum step wedge (ASW) equivalent radiodensity (eRD) has been used to quantify restorative material's radiodensity. The aim of this study was to evaluate the effects of image acquisition control (IAC) of a digital X-ray system on the radiodensity quantification under different exposure time settings. Materials and Methods: Three 1-mm thick restorative material samples with various opacities were prepared. Samples were radiographed alongside an ASW using one of three digital radiographic modes (linear mapping (L), nonlinear mapping (N), and nonlinear mapping and automatic exposure control activated (E)) under 3 exposure time settings (underexposure, normal-exposure, and overexposure). The ASW eRD of restorative materials, attenuation coefficients and contrasts of ASW, and the correlation coefficient of linear relationship between logarithms of gray-scale value and thicknesses of ASW were compared under 9 conditions. Results: The ASW eRD measurements of restorative materials by three digital radiographic modes were statistically different (p = 0.049) but clinically similar. The relationship between logarithms of background corrected grey scale value and thickness of ASW was highly linear but attenuation coefficients and contrasts varied significantly among 3 radiographic modes. Varying exposure times did not affect ASW eRD significantly. Conclusions: Even though different digital radiographic modes induced large variation on attenuation of coefficient and contrast of ASW, E mode improved diagnostic quality of the image significantly under the underexposure condition by improving contrasts, while maintaining ASW eRDs of restorative materials similar. Under the condition of this study, underexposure time may be acceptable clinically with digital X-ray system using automatic gain control that reduces radiation exposure for patient.

The Use of Advanced Optical Measurement Methods for the Mechanical Analysis of Shear Deficient Prestressed Concrete Members

  • Wilder, K. De;Roeck, G. De;Vandewalle, L.
    • International Journal of Concrete Structures and Materials
    • /
    • v.10 no.2
    • /
    • pp.189-203
    • /
    • 2016
  • This paper investigates on the use of advanced optical measurement methods, i.e. 3D coordinate measurement machines (3D CMM) and stereo-vision digital image correlation (3D DIC), for the mechanical analysis of shear deficient prestressed concrete members. Firstly, the experimental program is elaborated. Secondly, the working principle, experimental setup and corresponding accuracy and precision of the considered optical measurement techniques are reported. A novel way to apply synthesised strain sensor patterns for DIC is introduced. Thirdly, the experimental results are reported and an analysis is made of the structural behaviour based on the gathered experimental data. Both techniques yielded useful and complete data in comparison to traditional mechanical measurement techniques and allowed for the assessment of the mechanical behaviour of the reported test specimens. The identified structural behaviour presented in this paper can be used to optimize design procedure for shear-critical structural concrete members.